-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
pb_constraint.h
746 lines (646 loc) · 30.5 KB
/
pb_constraint.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_SAT_PB_CONSTRAINT_H_
#define OR_TOOLS_SAT_PB_CONSTRAINT_H_
#include <algorithm>
#include <cstdint>
#include <limits>
#include <memory>
#include <ostream>
#include <string>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "absl/log/check.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/base/strong_vector.h"
#include "ortools/base/types.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/bitset.h"
#include "ortools/util/stats.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
// The type of the integer coefficients in a pseudo-Boolean constraint.
// This is also used for the current value of a constraint or its bounds.
DEFINE_STRONG_INT64_TYPE(Coefficient);
// IMPORTANT: We can't use numeric_limits<Coefficient>::max() which will compile
// but just returns zero!!
const Coefficient kCoefficientMax(
std::numeric_limits<Coefficient::ValueType>::max());
// Represents a term in a pseudo-Boolean formula.
struct LiteralWithCoeff {
LiteralWithCoeff() = default;
LiteralWithCoeff(Literal l, Coefficient c) : literal(l), coefficient(c) {}
LiteralWithCoeff(Literal l, int64_t c) : literal(l), coefficient(c) {}
Literal literal;
Coefficient coefficient;
bool operator==(const LiteralWithCoeff& other) const {
return literal.Index() == other.literal.Index() &&
coefficient == other.coefficient;
}
};
template <typename H>
H AbslHashValue(H h, const LiteralWithCoeff& term) {
return H::combine(std::move(h), term.literal.Index(),
term.coefficient.value());
}
inline std::ostream& operator<<(std::ostream& os, LiteralWithCoeff term) {
os << term.coefficient << "[" << term.literal.DebugString() << "]";
return os;
}
// Puts the given Boolean linear expression in canonical form:
// - Merge all the literal corresponding to the same variable.
// - Remove zero coefficients.
// - Make all the coefficients positive.
// - Sort the terms by increasing coefficient values.
//
// This function also computes:
// - max_value: the maximum possible value of the formula.
// - bound_shift: which allows to updates initial bounds. That is, if an
// initial pseudo-Boolean constraint was
// lhs < initial_pb_formula < rhs
// then the new one is:
// lhs + bound_shift < canonical_form < rhs + bound_shift
//
// Finally, this will return false, if some integer overflow or underflow
// occurred during the reduction to the canonical form.
bool ComputeBooleanLinearExpressionCanonicalForm(
std::vector<LiteralWithCoeff>* cst, Coefficient* bound_shift,
Coefficient* max_value);
// Maps all the literals of the given constraint using the given mapping. The
// mapping may map a literal index to kTrueLiteralIndex or kFalseLiteralIndex in
// which case the literal will be considered fixed to the appropriate value.
//
// Note that this function also canonicalizes the constraint and updates
// bound_shift and max_value like ComputeBooleanLinearExpressionCanonicalForm()
// does.
//
// Finally, this will return false if some integer overflow or underflow
// occurred during the constraint simplification.
bool ApplyLiteralMapping(
const util_intops::StrongVector<LiteralIndex, LiteralIndex>& mapping,
std::vector<LiteralWithCoeff>* cst, Coefficient* bound_shift,
Coefficient* max_value);
// From a constraint 'expr <= ub' and the result (bound_shift, max_value) of
// calling ComputeBooleanLinearExpressionCanonicalForm() on 'expr', this returns
// a new rhs such that 'canonical expression <= rhs' is an equivalent
// constraint. This function deals with all the possible overflow corner cases.
//
// The result will be in [-1, max_value] where -1 means unsatisfiable and
// max_value means trivialy satisfiable.
Coefficient ComputeCanonicalRhs(Coefficient upper_bound,
Coefficient bound_shift, Coefficient max_value);
// Same as ComputeCanonicalRhs(), but uses the initial constraint lower bound
// instead. From a constraint 'lb <= expression', this returns a rhs such that
// 'canonical expression with literals negated <= rhs'.
//
// Note that the range is also [-1, max_value] with the same meaning.
Coefficient ComputeNegatedCanonicalRhs(Coefficient lower_bound,
Coefficient bound_shift,
Coefficient max_value);
// Returns true iff the Boolean linear expression is in canonical form.
bool BooleanLinearExpressionIsCanonical(absl::Span<const LiteralWithCoeff> cst);
// Given a Boolean linear constraint in canonical form, simplify its
// coefficients using simple heuristics.
void SimplifyCanonicalBooleanLinearConstraint(
std::vector<LiteralWithCoeff>* cst, Coefficient* rhs);
// Holds a set of boolean linear constraints in canonical form:
// - The constraint is a linear sum of LiteralWithCoeff <= rhs.
// - The linear sum satisfies the properties described in
// ComputeBooleanLinearExpressionCanonicalForm().
//
// TODO(user): Simplify further the constraints.
//
// TODO(user): Remove the duplication between this and what the sat solver
// is doing in AddLinearConstraint() which is basically the same.
//
// TODO(user): Remove duplicate constraints? some problems have them, and
// this is not ideal for the symmetry computation since it leads to a lot of
// symmetries of the associated graph that are not useful.
class CanonicalBooleanLinearProblem {
public:
CanonicalBooleanLinearProblem() = default;
// This type is neither copyable nor movable.
CanonicalBooleanLinearProblem(const CanonicalBooleanLinearProblem&) = delete;
CanonicalBooleanLinearProblem& operator=(
const CanonicalBooleanLinearProblem&) = delete;
// Adds a new constraint to the problem. The bounds are inclusive.
// Returns false in case of a possible overflow or if the constraint is
// never satisfiable.
//
// TODO(user): Use a return status to distinguish errors if needed.
bool AddLinearConstraint(bool use_lower_bound, Coefficient lower_bound,
bool use_upper_bound, Coefficient upper_bound,
std::vector<LiteralWithCoeff>* cst);
// Getters. All the constraints are guaranteed to be in canonical form.
int NumConstraints() const { return constraints_.size(); }
Coefficient Rhs(int i) const { return rhs_[i]; }
const std::vector<LiteralWithCoeff>& Constraint(int i) const {
return constraints_[i];
}
private:
bool AddConstraint(absl::Span<const LiteralWithCoeff> cst,
Coefficient max_value, Coefficient rhs);
std::vector<Coefficient> rhs_;
std::vector<std::vector<LiteralWithCoeff>> constraints_;
};
// Encode a constraint sum term <= rhs, where each term is a positive
// Coefficient times a literal. This class allows efficient modification of the
// constraint and is used during pseudo-Boolean resolution.
class MutableUpperBoundedLinearConstraint {
public:
// This must be called before any other functions is used with an higher
// variable index.
void ClearAndResize(int num_variables);
// Reset the constraint to 0 <= 0.
// Note that the constraint size stays the same.
void ClearAll();
// Returns the coefficient (>= 0) of the given variable.
Coefficient GetCoefficient(BooleanVariable var) const {
return AbsCoefficient(terms_[var]);
}
// Returns the literal under which the given variable appear in the
// constraint. Note that if GetCoefficient(var) == 0 this just returns
// Literal(var, true).
Literal GetLiteral(BooleanVariable var) const {
return Literal(var, terms_[var] > 0);
}
// If we have a lower bounded constraint sum terms >= rhs, then it is trivial
// to see that the coefficient of any term can be reduced to rhs if it is
// bigger. This does exactly this operation, but on the upper bounded
// representation.
//
// If we take a constraint sum ci.xi <= rhs, take its negation and add max_sum
// on both side, we have sum ci.(1 - xi) >= max_sum - rhs
// So every ci > (max_sum - rhs) can be replacend by (max_sum - rhs).
// Not that this operation also change the original rhs of the constraint.
void ReduceCoefficients();
// Same as ReduceCoefficients() but only consider the coefficient of the given
// variable.
void ReduceGivenCoefficient(BooleanVariable var) {
const Coefficient bound = max_sum_ - rhs_;
const Coefficient diff = GetCoefficient(var) - bound;
if (diff > 0) {
rhs_ -= diff;
max_sum_ -= diff;
terms_[var] = (terms_[var] > 0) ? bound : -bound;
}
}
// Compute the constraint slack assuming that only the variables with index <
// trail_index are assigned.
Coefficient ComputeSlackForTrailPrefix(const Trail& trail,
int trail_index) const;
// Same as ReduceCoefficients() followed by ComputeSlackForTrailPrefix(). It
// allows to loop only once over all the terms of the constraint instead of
// doing it twice. This helps since doing that can be the main bottleneck.
//
// Note that this function assumes that the returned slack will be negative.
// This allow to DCHECK some assumptions on what coefficients can be reduced
// or not.
//
// TODO(user): Ideally the slack should be maitainable incrementally.
Coefficient ReduceCoefficientsAndComputeSlackForTrailPrefix(
const Trail& trail, int trail_index);
// Relaxes the constraint so that:
// - ComputeSlackForTrailPrefix(trail, trail_index) == target;
// - All the variables that were propagated given the assignment < trail_index
// are still propagated.
//
// As a precondition, ComputeSlackForTrailPrefix(trail, trail_index) >= target
// Note that nothing happen if the slack is already equals to target.
//
// Algorithm: Let diff = slack - target (>= 0). We will split the constraint
// linear expression in 3 parts:
// - P1: the true variables (only the one assigned < trail_index).
// - P2: the other variables with a coeff > diff.
// Note that all these variables were the propagated ones.
// - P3: the other variables with a coeff <= diff.
// We can then transform P1 + P2 + P3 <= rhs_ into P1 + P2' <= rhs_ - diff
// Where P2' is the same sum as P2 with all the coefficient reduced by diff.
//
// Proof: Given the old constraint, we want to show that the relaxed one is
// always true. If all the variable in P2' are false, then
// P1 <= rhs_ - slack <= rhs_ - diff is always true. If at least one of the
// P2' variable is true, then P2 >= P2' + diff and we have
// P1 + P2' + diff <= P1 + P2 <= rhs_.
void ReduceSlackTo(const Trail& trail, int trail_index,
Coefficient initial_slack, Coefficient target);
// Copies this constraint into a vector<LiteralWithCoeff> representation.
void CopyIntoVector(std::vector<LiteralWithCoeff>* output);
// Adds a non-negative value to this constraint Rhs().
void AddToRhs(Coefficient value) {
CHECK_GE(value, 0);
rhs_ += value;
}
Coefficient Rhs() const { return rhs_; }
Coefficient MaxSum() const { return max_sum_; }
// Adds a term to this constraint. This is in the .h for efficiency.
// The encoding used internally is described below in the terms_ comment.
void AddTerm(Literal literal, Coefficient coeff) {
CHECK_GT(coeff, 0);
const BooleanVariable var = literal.Variable();
const Coefficient term_encoding = literal.IsPositive() ? coeff : -coeff;
if (literal != GetLiteral(var)) {
// The two terms are of opposite sign, a "cancelation" happens.
// We need to change the encoding of the lower magnitude term.
// - If term > 0, term . x -> term . (x - 1) + term
// - If term < 0, term . (x - 1) -> term . x - term
// In both cases, rhs -= abs(term).
rhs_ -= std::min(coeff, AbsCoefficient(terms_[var]));
max_sum_ += AbsCoefficient(term_encoding + terms_[var]) -
AbsCoefficient(terms_[var]);
} else {
// Both terms are of the same sign (or terms_[var] is zero).
max_sum_ += coeff;
}
CHECK_GE(max_sum_, 0) << "Overflow";
terms_[var] += term_encoding;
non_zeros_.Set(var);
}
// Returns the "cancelation" amount of AddTerm(literal, coeff).
Coefficient CancelationAmount(Literal literal, Coefficient coeff) const {
DCHECK_GT(coeff, 0);
const BooleanVariable var = literal.Variable();
if (literal == GetLiteral(var)) return Coefficient(0);
return std::min(coeff, AbsCoefficient(terms_[var]));
}
// Returns a set of positions that contains all the non-zeros terms of the
// constraint. Note that this set can also contains some zero terms.
const std::vector<BooleanVariable>& PossibleNonZeros() const {
return non_zeros_.PositionsSetAtLeastOnce();
}
// Returns a string representation of the constraint.
std::string DebugString();
private:
Coefficient AbsCoefficient(Coefficient a) const { return a > 0 ? a : -a; }
// Only used for DCHECK_EQ(max_sum_, ComputeMaxSum());
Coefficient ComputeMaxSum() const;
// The encoding is special:
// - If terms_[x] > 0, then the associated term is 'terms_[x] . x'
// - If terms_[x] < 0, then the associated term is 'terms_[x] . (x - 1)'
util_intops::StrongVector<BooleanVariable, Coefficient> terms_;
// The right hand side of the constraint (sum terms <= rhs_).
Coefficient rhs_;
// The constraint maximum sum (i.e. sum of the absolute term coefficients).
// Note that checking the integer overflow on this sum is enough.
Coefficient max_sum_;
// Contains the possibly non-zeros terms_ value.
SparseBitset<BooleanVariable> non_zeros_;
};
// A simple "helper" class to enqueue a propagated literal on the trail and
// keep the information needed to explain it when requested.
class UpperBoundedLinearConstraint;
struct PbConstraintsEnqueueHelper {
void Enqueue(Literal l, int source_trail_index,
UpperBoundedLinearConstraint* ct, Trail* trail) {
reasons[trail->Index()] = {source_trail_index, ct};
trail->Enqueue(l, propagator_id);
}
// The propagator id of PbConstraints.
int propagator_id = 0;
// A temporary vector to store the last conflict.
std::vector<Literal> conflict;
// Information needed to recover the reason of an Enqueue().
// Indexed by trail_index.
struct ReasonInfo {
int source_trail_index;
UpperBoundedLinearConstraint* pb_constraint;
};
std::vector<ReasonInfo> reasons;
};
// This class contains half the propagation logic for a constraint of the form
//
// sum ci * li <= rhs, ci positive coefficients, li literals.
//
// The other half is implemented by the PbConstraints class below which takes
// care of updating the 'threshold' value of this constraint:
// - 'slack' is rhs minus all the ci of the variables xi assigned to
// true. Note that it is not updated as soon as xi is assigned, but only
// later when this assignment is "processed" by the PbConstraints class.
// - 'threshold' is the distance from 'slack' to the largest coefficient ci
// smaller or equal to slack. By definition, all the literals with
// even larger coefficients that are yet 'processed' must be false for the
// constraint to be satisfiable.
class UpperBoundedLinearConstraint {
public:
// Takes a pseudo-Boolean formula in canonical form.
explicit UpperBoundedLinearConstraint(
const std::vector<LiteralWithCoeff>& cst);
// Returns true if the given terms are the same as the one in this constraint.
bool HasIdenticalTerms(absl::Span<const LiteralWithCoeff> cst);
Coefficient Rhs() const { return rhs_; }
// Sets the rhs of this constraint. Compute the initial threshold value using
// only the literal with a trail index smaller than the given one. Enqueues on
// the trail any propagated literals.
//
// Returns false if the preconditions described in
// PbConstraints::AddConstraint() are not meet.
bool InitializeRhs(Coefficient rhs, int trail_index, Coefficient* threshold,
Trail* trail, PbConstraintsEnqueueHelper* helper);
// Tests for propagation and enqueues propagated literals on the trail.
// Returns false if a conflict was detected, in which case conflict is filled.
//
// Preconditions:
// - For each "processed" literal, the given threshold value must have been
// decreased by its associated coefficient in the constraint. It must now
// be stricly negative.
// - The given trail_index is the index of a true literal in the trail which
// just caused threshold to become stricly negative. All literals with
// smaller index must have been "processed". All assigned literals with
// greater trail index are not yet "processed".
//
// The threshold is updated to its new value.
bool Propagate(int trail_index, Coefficient* threshold, Trail* trail,
PbConstraintsEnqueueHelper* helper);
// Updates the given threshold and the internal state. This is the opposite of
// Propagate(). Each time a literal in unassigned, the threshold value must
// have been increased by its coefficient. This update the threshold to its
// new value.
void Untrail(Coefficient* threshold, int trail_index);
// Provided that the literal with given source_trail_index was the one that
// propagated the conflict or the literal we wants to explain, then this will
// compute the reason.
//
// Some properties of the reason:
// - Literals of level 0 are removed.
// - It will always contain the literal with given source_trail_index (except
// if it is of level 0).
// - We make the reason more compact by greedily removing terms with small
// coefficients that would not have changed the propagation.
//
// TODO(user): Maybe it is possible to derive a better reason by using more
// information. For instance one could use the mask of literals that are
// better to use during conflict minimization (namely the one already in the
// 1-UIP conflict).
void FillReason(const Trail& trail, int source_trail_index,
BooleanVariable propagated_variable,
std::vector<Literal>* reason);
// Same operation as SatSolver::ResolvePBConflict(), the only difference is
// that here the reason for var is *this.
void ResolvePBConflict(const Trail& trail, BooleanVariable var,
MutableUpperBoundedLinearConstraint* conflict,
Coefficient* conflict_slack);
// Adds this pb constraint into the given mutable one.
//
// TODO(user): Provides instead an easy to use iterator over an
// UpperBoundedLinearConstraint and move this function to
// MutableUpperBoundedLinearConstraint.
void AddToConflict(MutableUpperBoundedLinearConstraint* conflict);
// Compute the sum of the "cancelation" in AddTerm() if *this is added to
// the given conflict. The sum doesn't take into account literal assigned with
// a trail index smaller than the given one.
//
// Note(user): Currently, this is only used in DCHECKs.
Coefficient ComputeCancelation(
const Trail& trail, int trail_index,
const MutableUpperBoundedLinearConstraint& conflict);
// API to mark a constraint for deletion before actually deleting it.
void MarkForDeletion() { is_marked_for_deletion_ = true; }
bool is_marked_for_deletion() const { return is_marked_for_deletion_; }
// Only learned constraints are considered for deletion during the constraint
// cleanup phase. We also can't delete variables used as a reason.
void set_is_learned(bool is_learned) { is_learned_ = is_learned; }
bool is_learned() const { return is_learned_; }
bool is_used_as_a_reason() const { return first_reason_trail_index_ != -1; }
// Activity of the constraint. Only low activity constraint will be deleted
// during the constraint cleanup phase.
void set_activity(double activity) { activity_ = activity; }
double activity() const { return activity_; }
// Returns a fingerprint of the constraint linear expression (without rhs).
// This is used for duplicate detection.
uint64_t hash() const { return hash_; }
// This is used to get statistics of the number of literals inspected by
// a Propagate() call.
int already_propagated_end() const { return already_propagated_end_; }
private:
Coefficient GetSlackFromThreshold(Coefficient threshold) {
return (index_ < 0) ? threshold : coeffs_[index_] + threshold;
}
void Update(Coefficient slack, Coefficient* threshold) {
*threshold = (index_ < 0) ? slack : slack - coeffs_[index_];
already_propagated_end_ = starts_[index_ + 1];
}
// Constraint management fields.
// TODO(user): Rearrange and specify bit size to minimize memory usage.
bool is_marked_for_deletion_;
bool is_learned_;
int first_reason_trail_index_;
double activity_;
// Constraint propagation fields.
int index_;
int already_propagated_end_;
// In the internal representation, we merge the terms with the same
// coefficient.
// - literals_ contains all the literal of the constraint sorted by
// increasing coefficients.
// - coeffs_ contains unique increasing coefficients.
// - starts_[i] is the index in literals_ of the first literal with
// coefficient coeffs_[i].
std::vector<Coefficient> coeffs_;
std::vector<int> starts_;
std::vector<Literal> literals_;
Coefficient rhs_;
uint64_t hash_;
};
// Class responsible for managing a set of pseudo-Boolean constraints and their
// propagation.
class PbConstraints : public SatPropagator {
public:
explicit PbConstraints(Model* model)
: SatPropagator("PbConstraints"),
conflicting_constraint_index_(-1),
num_learned_constraint_before_cleanup_(0),
constraint_activity_increment_(1.0),
parameters_(model->GetOrCreate<SatParameters>()),
stats_("PbConstraints"),
num_constraint_lookups_(0),
num_inspected_constraint_literals_(0),
num_threshold_updates_(0) {
model->GetOrCreate<Trail>()->RegisterPropagator(this);
}
// This type is neither copyable nor movable.
PbConstraints(const PbConstraints&) = delete;
PbConstraints& operator=(const PbConstraints&) = delete;
~PbConstraints() override {
IF_STATS_ENABLED({
LOG(INFO) << stats_.StatString();
LOG(INFO) << "num_constraint_lookups_: " << num_constraint_lookups_;
LOG(INFO) << "num_threshold_updates_: " << num_threshold_updates_;
});
}
bool Propagate(Trail* trail) final;
void Untrail(const Trail& trail, int trail_index) final;
absl::Span<const Literal> Reason(const Trail& trail, int trail_index,
int64_t conflict_id) const final;
// Changes the number of variables.
void Resize(int num_variables) {
// Note that we avoid using up memory in the common case where there are no
// pb constraints at all. If there is 10 million variables, this vector
// alone will take 480 MB!
if (!constraints_.empty()) {
to_update_.resize(num_variables << 1);
enqueue_helper_.reasons.resize(num_variables);
}
}
// Adds a constraint in canonical form to the set of managed constraints. Note
// that this detects constraints with exactly the same terms. In this case,
// the constraint rhs is updated if the new one is lower or nothing is done
// otherwise.
//
// There are some preconditions, and the function will return false if they
// are not met. The constraint can be added when the trail is not empty,
// however given the current propagated assignment:
// - The constraint cannot be conflicting.
// - The constraint cannot have propagated at an earlier decision level.
bool AddConstraint(const std::vector<LiteralWithCoeff>& cst, Coefficient rhs,
Trail* trail);
// Same as AddConstraint(), but also marks the added constraint as learned
// so that it can be deleted during the constraint cleanup phase.
bool AddLearnedConstraint(const std::vector<LiteralWithCoeff>& cst,
Coefficient rhs, Trail* trail);
// Returns the number of constraints managed by this class.
int NumberOfConstraints() const { return constraints_.size(); }
bool IsEmpty() const final { return constraints_.empty(); }
// ConflictingConstraint() returns the last PB constraint that caused a
// conflict. Calling ClearConflictingConstraint() reset this to nullptr.
//
// TODO(user): This is a hack to get the PB conflict, because the rest of
// the solver API assume only clause conflict. Find a cleaner way?
void ClearConflictingConstraint() { conflicting_constraint_index_ = -1; }
UpperBoundedLinearConstraint* ConflictingConstraint() {
if (conflicting_constraint_index_ == -1) return nullptr;
return constraints_[conflicting_constraint_index_.value()].get();
}
// Returns the underlying UpperBoundedLinearConstraint responsible for
// assigning the literal at given trail index.
UpperBoundedLinearConstraint* ReasonPbConstraint(int trail_index) const;
// Activity update functions.
// TODO(user): Remove duplication with other activity update functions.
void BumpActivity(UpperBoundedLinearConstraint* constraint);
void RescaleActivities(double scaling_factor);
void UpdateActivityIncrement();
// Only used for testing.
void DeleteConstraint(int index) {
constraints_[index]->MarkForDeletion();
DeleteConstraintMarkedForDeletion();
}
// Some statistics.
int64_t num_constraint_lookups() const { return num_constraint_lookups_; }
int64_t num_inspected_constraint_literals() const {
return num_inspected_constraint_literals_;
}
int64_t num_threshold_updates() const { return num_threshold_updates_; }
private:
bool PropagateNext(Trail* trail);
// Same function as the clause related one is SatSolver().
// TODO(user): Remove duplication.
void ComputeNewLearnedConstraintLimit();
void DeleteSomeLearnedConstraintIfNeeded();
// Deletes all the UpperBoundedLinearConstraint for which
// is_marked_for_deletion() is true. This is relatively slow in O(number of
// terms in all constraints).
void DeleteConstraintMarkedForDeletion();
// Each constraint managed by this class is associated with an index.
// The set of indices is always [0, num_constraints_).
//
// Note(user): this complicate things during deletion, but the propagation is
// about two times faster with this implementation than one with direct
// pointer to an UpperBoundedLinearConstraint. The main reason for this is
// probably that the thresholds_ vector is a lot more efficient cache-wise.
DEFINE_STRONG_INDEX_TYPE(ConstraintIndex);
struct ConstraintIndexWithCoeff {
ConstraintIndexWithCoeff() = default; // Needed for vector.resize()
ConstraintIndexWithCoeff(bool n, ConstraintIndex i, Coefficient c)
: need_untrail_inspection(n), index(i), coefficient(c) {}
bool need_untrail_inspection;
ConstraintIndex index;
Coefficient coefficient;
};
// The set of all pseudo-boolean constraint managed by this class.
std::vector<std::unique_ptr<UpperBoundedLinearConstraint>> constraints_;
// The current value of the threshold for each constraints.
util_intops::StrongVector<ConstraintIndex, Coefficient> thresholds_;
// For each literal, the list of all the constraints that contains it together
// with the literal coefficient in these constraints.
util_intops::StrongVector<LiteralIndex, std::vector<ConstraintIndexWithCoeff>>
to_update_;
// Bitset used to optimize the Untrail() function.
SparseBitset<ConstraintIndex> to_untrail_;
// Pointers to the constraints grouped by their hash.
// This is used to find duplicate constraints by AddConstraint().
absl::flat_hash_map<int64_t, std::vector<UpperBoundedLinearConstraint*>>
possible_duplicates_;
// Helper to enqueue propagated literals on the trail and store their reasons.
PbConstraintsEnqueueHelper enqueue_helper_;
// Last conflicting PB constraint index. This is reset to -1 when
// ClearConflictingConstraint() is called.
ConstraintIndex conflicting_constraint_index_;
// Used for the constraint cleaning policy.
int target_number_of_learned_constraint_;
int num_learned_constraint_before_cleanup_;
double constraint_activity_increment_;
// Algorithm parameters.
SatParameters* parameters_;
// Some statistics.
mutable StatsGroup stats_;
int64_t num_constraint_lookups_;
int64_t num_inspected_constraint_literals_;
int64_t num_threshold_updates_;
};
// Boolean linear constraints can propagate a lot of literals at the same time.
// As a result, all these literals will have exactly the same reason. It is
// important to take advantage of that during the conflict
// computation/minimization. On some problem, this can have a huge impact.
//
// TODO(user): With the new SAME_REASON_AS mechanism, this is more general so
// move out of pb_constraint.
class VariableWithSameReasonIdentifier {
public:
explicit VariableWithSameReasonIdentifier(const Trail& trail)
: trail_(trail) {}
// This type is neither copyable nor movable.
VariableWithSameReasonIdentifier(const VariableWithSameReasonIdentifier&) =
delete;
VariableWithSameReasonIdentifier& operator=(
const VariableWithSameReasonIdentifier&) = delete;
void Resize(int num_variables) {
first_variable_.resize(num_variables);
seen_.ClearAndResize(BooleanVariable(num_variables));
}
// Clears the cache. Call this before each conflict analysis.
void Clear() { seen_.ClearAll(); }
// Returns the first variable with exactly the same reason as 'var' on which
// this function was called since the last Clear(). Note that if no variable
// had the same reason, then var is returned.
BooleanVariable FirstVariableWithSameReason(BooleanVariable var) {
if (seen_[var]) return first_variable_[var];
const BooleanVariable reference_var =
trail_.ReferenceVarWithSameReason(var);
if (reference_var == var) return var;
if (seen_[reference_var]) return first_variable_[reference_var];
seen_.Set(reference_var);
first_variable_[reference_var] = var;
return var;
}
private:
const Trail& trail_;
util_intops::StrongVector<BooleanVariable, BooleanVariable> first_variable_;
SparseBitset<BooleanVariable> seen_;
};
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_PB_CONSTRAINT_H_