This repository has been archived by the owner on Nov 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 19
/
labels.py
91 lines (74 loc) · 3.25 KB
/
labels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This application demonstrates how to detect labels from a video
based on the image content with the Google Cloud Video Intelligence
API.
For more information, check out the documentation at
https://cloud.google.com/videointelligence/docs.
Usage Example:
python labels.py gs://cloud-ml-sandbox/video/chicago.mp4
"""
# [START video_label_tutorial]
# [START video_label_tutorial_imports]
import argparse
from google.cloud import videointelligence
# [END video_label_tutorial_imports]
def analyze_labels(path):
"""Detects labels given a GCS path."""
# [START video_label_tutorial_construct_request]
video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.LABEL_DETECTION]
operation = video_client.annotate_video(
request={"features": features, "input_uri": path}
)
# [END video_label_tutorial_construct_request]
print("\nProcessing video for label annotations:")
# [START video_label_tutorial_check_operation]
result = operation.result(timeout=90)
print("\nFinished processing.")
# [END video_label_tutorial_check_operation]
# [START video_label_tutorial_parse_response]
segment_labels = result.annotation_results[0].segment_label_annotations
for i, segment_label in enumerate(segment_labels):
print("Video label description: {}".format(segment_label.entity.description))
for category_entity in segment_label.category_entities:
print(
"\tLabel category description: {}".format(category_entity.description)
)
for i, segment in enumerate(segment_label.segments):
start_time = (
segment.segment.start_time_offset.seconds
+ segment.segment.start_time_offset.microseconds / 1e6
)
end_time = (
segment.segment.end_time_offset.seconds
+ segment.segment.end_time_offset.microseconds / 1e6
)
positions = "{}s to {}s".format(start_time, end_time)
confidence = segment.confidence
print("\tSegment {}: {}".format(i, positions))
print("\tConfidence: {}".format(confidence))
print("\n")
# [END video_label_tutorial_parse_response]
if __name__ == "__main__":
# [START video_label_tutorial_run_application]
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument("path", help="GCS file path for label detection.")
args = parser.parse_args()
analyze_labels(args.path)
# [END video_label_tutorial_run_application]
# [END video_label_tutorial]