-
Notifications
You must be signed in to change notification settings - Fork 97
/
CLagrangianRefFEs.jl
753 lines (646 loc) · 21.4 KB
/
CLagrangianRefFEs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
struct GradConformity <: Conformity end
const H1Conformity = GradConformity
function get_face_own_nodes(reffe::GenericLagrangianRefFE{GradConformity},conf::GradConformity)
p = get_polytope(reffe)
orders = get_orders(reffe)
nodes, face_own_nodes = compute_nodes(p,orders)
face_own_nodes
end
function get_own_nodes_permutations(reffe::GenericLagrangianRefFE{GradConformity},conf::GradConformity)
p = get_polytope(reffe)
face_own_nodes = get_face_own_nodes(reffe)
dofs = get_dof_basis(reffe)
interior_nodes = dofs.nodes[face_own_nodes[end]]
compute_own_nodes_permutations(p,interior_nodes)
end
function get_face_own_nodes_permutations(reffe::GenericLagrangianRefFE{GradConformity},conf::GradConformity)
own_nodes_permutations = get_own_nodes_permutations(reffe)
reffaces = reffe.reffe.metadata
_reffaces = vcat(reffaces...)
face_own_nodes_permutations = map(get_own_nodes_permutations,_reffaces)
_compute_face_own_nodes_permutations(
num_nodes(reffe),
get_face_own_nodes(reffe),
face_own_nodes_permutations,
own_nodes_permutations)
end
function _compute_face_own_nodes_permutations(
nnodes,
face_own_nodes,
face_own_nodes_permutations,
own_nodes_permutations)
if length(face_own_nodes_permutations) == 0
# Vertex degenerated case
return [own_nodes_permutations,]
else
if nnodes == length(face_own_nodes[end])
# 0-order degenerated case
_face_own_nodes_permutations = map( (x) -> fill(Int[],length(x)) , face_own_nodes_permutations )
else
# Standard case
_face_own_nodes_permutations = copy(face_own_nodes_permutations)
end
push!(_face_own_nodes_permutations,own_nodes_permutations)
return _face_own_nodes_permutations
end
end
# API particular to LagrangianRefFE{GradConformity}
"""
ReferenceFE{N}(reffe::GenericLagrangianRefFE{GradConformity},iface::Integer) where N
"""
function ReferenceFE{N}(reffe::GenericLagrangianRefFE{GradConformity},iface::Integer) where N
reffaces = reffe.reffe.metadata
reffaces[N+1][iface]
end
function ReferenceFE{D}(reffe::GenericLagrangianRefFE{GradConformity,D},iface::Integer) where D
@assert iface==1 "Only one D-face"
reffe
end
"""
get_reffaces(
::Type{ReferenceFE{d}},
reffe::GenericLagrangianRefFE{GradConformity}) where d -> Vector{GenericLagrangianRefFE{GradConformity,M,d}}
"""
function get_reffaces(::Type{ReferenceFE{d}},reffe::GenericLagrangianRefFE{GradConformity}) where d
ftype_to_reffe, _ = _compute_reffes_and_face_types(reffe,Val{d}())
ftype_to_reffe
[reffe for reffe in ftype_to_reffe]
end
"""
get_face_type(reffe::GenericLagrangianRefFE{GradConformity}, d::Integer) -> Vector{Int}
"""
function get_face_type(reffe::GenericLagrangianRefFE{GradConformity}, d::Integer)
_, iface_to_ftype = _compute_reffes_and_face_types(reffe,Val{d}())
iface_to_ftype
end
function _compute_reffes_and_face_types(reffe::GenericLagrangianRefFE{GradConformity},::Val{d}) where d
p = get_polytope(reffe)
iface_to_reffe = [ ReferenceFE{d}(reffe,iface) for iface in 1:num_faces(p,d) ]
_find_unique_with_indices(iface_to_reffe)
end
"""
is_first_order(reffe::GenericLagrangianRefFE{GradConformity}) -> Bool
"""
function is_first_order(reffe::GenericLagrangianRefFE{GradConformity})
p = get_polytope(reffe)
r = true
r = r && num_vertices(p) == num_nodes(reffe)
r = r && get_vertex_node(reffe) == collect(1:num_nodes(reffe))
r
end
"""
is_affine(reffe::GenericLagrangianRefFE{GradConformity}) -> Bool
Query if the `reffe` leads to an afine map
(true only for first order spaces on top of simplices)
"""
function is_affine(reffe::GenericLagrangianRefFE{GradConformity})
p = get_polytope(reffe)
is_first_order(reffe) && is_simplex(p)
end
"""
is_P(reffe::GenericLagrangianRefFE{GradConformity})
"""
function is_P(reffe::GenericLagrangianRefFE{GradConformity})
is_simplex(get_polytope(reffe))
end
"""
is_Q(reffe::GenericLagrangianRefFE{GradConformity})
"""
function is_Q(reffe::GenericLagrangianRefFE{GradConformity})
monomials = get_prebasis(reffe)
n = length(get_exponents(monomials))
is_n_cube(get_polytope(reffe)) && (prod(get_orders(reffe).+1) == n)
end
"""
is_S(reffe::GenericLagrangianRefFE{GradConformity})
"""
function is_S(reffe::GenericLagrangianRefFE{GradConformity})
is_n_cube(get_polytope(reffe)) && ! is_Q(reffe)
end
function to_dict(reffe::GenericLagrangianRefFE{GradConformity})
p = get_polytope(reffe)
b = get_prebasis(reffe)
dict = Dict{Symbol,Any}()
dict[:orders] = collect(get_orders(reffe))
dict[:extrusion] = Array(TensorValues.get_array(get_extrusion(p)))
if is_S(reffe)
dict[:space] = "serendipity"
else
dict[:space] = "default"
end
dict[:value] = string(get_value_type(b))
dict
end
function from_dict(::Type{<:LagrangianRefFE},dict::Dict{Symbol,Any})
orders = Tuple(dict[:orders])
extrusion = Tuple(dict[:extrusion])
if dict[:value] == "Float64"
value = Float64
else
@notimplemented
end
space = dict[:space]
p = Polytope(extrusion...)
if space == "default"
reffe = LagrangianRefFE(value,p,orders)
elseif space == "serendipity"
reffe = SerendipityRefFE(value,p,orders)
else
@unreachable "unknown space type"
end
reffe
end
# Construction of LagrangianRefFE from Polytopes
"""
LagrangianRefFE(::Type{T},p::Polytope,orders) where T
LagrangianRefFE(::Type{T},p::Polytope,order::Int) where T
Builds a `LagrangianRefFE` object on top of the given polytope. `T` is the type of
the value of the approximation space (e.g., `T=Float64` for scalar-valued problems,
`T=VectorValue{N,Float64}` for vector-valued problems with `N` components). The arguments `order` or `orders`
are for the polynomial order of the resulting space, which allows isotropic or anisotropic orders respectively
(provided that the cell topology allows the given anisotropic order). The argument `orders` should be an
indexable collection of `D` integers (e.g., a tuple or a vector), being `D` the number of space dimensions.
In order to be able to use this function, the type of the provided polytope `p` has to implement the
following additional methods. They have been implemented for `ExtrusionPolytope` in the library. They
need to be implemented for new polytope types in order to build Lagangian reference elements on top of them.
- [`compute_monomial_basis(::Type{T},p::Polytope,orders) where T`](@ref)
- [`compute_own_nodes(p::Polytope,orders)`](@ref)
- [`compute_face_orders(p::Polytope,face::Polytope,iface::Int,orders)`](@ref)
The following methods are also used in the construction of the `LagrangianRefFE` object. A default implementation
of them is available in terms of the three previous methods. However, the user can also implement them for
new polytope types increasing customization possibilities.
- [`compute_nodes(p::Polytope,orders)`](@ref)
- [`compute_own_nodes_permutations(p::Polytope, interior_nodes)`](@ref)
- [`compute_lagrangian_reffaces(::Type{T},p::Polytope,orders) where T`](@ref)
"""
function LagrangianRefFE(::Type{T},p::Polytope{D},orders;space::Symbol=_default_space(p)) where {T,D}
if space == :P && is_n_cube(p)
return _PDiscRefFE(T,p,orders)
elseif space == :S && is_n_cube(p)
SerendipityRefFE(T,p,orders)
else
if any(orders.==0) && !all(orders.==0)
cont = map(i -> i == 0 ? DISC : CONT,orders)
return _cd_lagrangian_ref_fe(T,p,orders,cont)
else
return _lagrangian_ref_fe(T,p,orders)
end
end
end
function _default_space(p)
if is_n_cube(p)
:Q
else
:P
end
end
function _lagrangian_ref_fe(::Type{T},p::Polytope{D},orders) where {T,D}
prebasis = compute_monomial_basis(T,p,orders)
nodes, face_own_nodes = compute_nodes(p,orders)
dofs = LagrangianDofBasis(T,nodes)
reffaces = compute_lagrangian_reffaces(T,p,orders)
nnodes = length(dofs.nodes)
ndofs = length(dofs.dof_to_node)
metadata = reffaces
_reffaces = vcat(reffaces...)
face_nodes = _generate_face_nodes(nnodes,face_own_nodes,p,_reffaces)
face_own_dofs = _generate_face_own_dofs(face_own_nodes, dofs.node_and_comp_to_dof)
face_dofs = _generate_face_dofs(ndofs,face_own_dofs,p,_reffaces)
if all(orders .== 0 ) && D>0
conf = L2Conformity()
else
conf = GradConformity()
end
reffe = GenericRefFE(
ndofs,
p,
prebasis,
dofs,
conf,
metadata,
face_dofs)
GenericLagrangianRefFE(reffe,face_nodes)
end
function MonomialBasis(::Type{T},p::Polytope,orders) where T
compute_monomial_basis(T,p,orders)
end
function LagrangianDofBasis(::Type{T},p::Polytope,orders) where T
nodes, _ = compute_nodes(p,orders)
LagrangianDofBasis(T,nodes)
end
# Helpers for LagrangianRefFE constructor
function _generate_face_nodes(nnodes,face_to_own_nodes,polytope,reffaces)
face_to_num_fnodes = map(num_nodes,reffaces)
push!(face_to_num_fnodes,nnodes)
face_to_lface_to_own_fnodes = map(get_face_own_nodes,reffaces)
push!(face_to_lface_to_own_fnodes,face_to_own_nodes)
face_to_lface_to_face = get_faces(polytope)
_generate_face_nodes_aux(
nnodes,
face_to_own_nodes,
face_to_num_fnodes,
face_to_lface_to_own_fnodes,
face_to_lface_to_face)
end
function _generate_face_dofs(ndofs,face_to_own_dofs,polytope,reffaces)
face_to_num_fdofs = map(num_dofs,reffaces)
push!(face_to_num_fdofs,ndofs)
face_to_lface_to_own_fdofs = map(get_face_own_dofs,reffaces)
push!(face_to_lface_to_own_fdofs,face_to_own_dofs)
face_to_lface_to_face = get_faces(polytope)
_generate_face_nodes_aux(
ndofs,
face_to_own_dofs,
face_to_num_fdofs,
face_to_lface_to_own_fdofs,
face_to_lface_to_face)
end
function _generate_face_nodes_aux(
nnodes,
face_to_own_nodes,
face_to_num_fnodes,
face_to_lface_to_own_fnodes,
face_to_lface_to_face)
if nnodes == length(face_to_own_nodes[end])
face_fnode_to_node = fill(Int[],length(face_to_own_nodes))
face_fnode_to_node[end] = collect(1:nnodes)
return face_fnode_to_node
end
face_fnode_to_node = Vector{Int}[]
for (face, nfnodes) in enumerate(face_to_num_fnodes)
fnode_to_node = zeros(Int,nfnodes)
lface_to_face = face_to_lface_to_face[face]
lface_to_own_fnodes = face_to_lface_to_own_fnodes[face]
for (lface, faceto) in enumerate(lface_to_face)
own_nodes = face_to_own_nodes[faceto]
own_fnodes = lface_to_own_fnodes[lface]
fnode_to_node[own_fnodes] = own_nodes
end
push!(face_fnode_to_node,fnode_to_node)
end
face_fnode_to_node
end
# Constructors taking Int
function LagrangianRefFE(::Type{T},p::Polytope{D},order::Int;space::Symbol=_default_space(p)) where {T,D}
orders = tfill(order,Val{D}())
LagrangianRefFE(T,p,orders;space=space)
end
function MonomialBasis(::Type{T},p::Polytope{D},order::Int) where {D,T}
orders = tfill(order,Val{D}())
MonomialBasis(T,p,orders)
end
function LagrangianDofBasis(::Type{T},p::Polytope{D},order::Int) where {T,D}
orders = tfill(order,Val{D}())
LagrangianDofBasis(T,p,orders)
end
# Queries needed to be implemented for polytopes in order to use them
# for building LagrangianRefFEs in a seamless way
"""
compute_monomial_basis(::Type{T},p::Polytope,orders) where T -> MonomialBasis
Returns the monomial basis of value type `T` and order per direction described by `orders`
on top of the polytope `p`.
"""
function compute_monomial_basis(::Type{T},p::Polytope,orders) where T
@abstractmethod
end
"""
compute_own_nodes(p::Polytope{D},orders) where D -> Vector{Point{D,Float64}}
Returns the coordinates of the nodes owned by the interior of the polytope
associated with a Lagrangian space with the order per direction described by `orders`.
"""
function compute_own_nodes(p::Polytope,orders)
@abstractmethod
end
"""
compute_face_orders(p::Polytope,face::Polytope,iface::Int,orders)
Returns a vector or a tuple with the order per direction at the face `face`
of the polytope `p` when restricting the order per direction `orders` to this face.
`iface` is the face id of `face` in the numeration restricted to the face dimension.
"""
function compute_face_orders(p::Polytope,face::Polytope,iface::Int,orders)
@abstractmethod
end
"""
compute_nodes(p::Polytope,orders)
When called
node_coords, face_own_nodes = compute_nodes(p,orders)
Returns `node_coords`, the nodal coordinates of all the Lagrangian nodes associated with the order per direction
`orders`, and `face_own_nodes`, being a vector of vectors indicating which nodes are owned by each of
the faces of the polytope `p`.
"""
function compute_nodes(p::Polytope,orders)
_compute_nodes(p,orders)
end
"""
compute_own_nodes_permutations(
p::Polytope, own_nodes_coordinates) -> Vector{Vector{Int}}
Returns a vector of vectors with the permutations of the nodes owned by the interior of the
polytope.
"""
function compute_own_nodes_permutations(p::Polytope, interior_nodes)
perms = _compute_node_permutations(p, interior_nodes)
perms
end
"""
compute_lagrangian_reffaces(::Type{T},p::Polytope,orders) where T
Returns a tuple of length `D` being the number of space dimensions.
The entry `d+1` of this tuple contains a vector of `LagrangianRefFE`
one for each face of dimension `d` on the boundary of the polytope.
"""
function compute_lagrangian_reffaces(::Type{T},p::Polytope,orders) where T
_compute_lagrangian_reffaces(T,p,orders)
end
# Default implementations
function _compute_nodes(p,orders)
if any( orders .== 0)
_compute_constant_nodes(p,orders)
elseif all(orders .== 1)
_compute_linear_nodes(p)
else
_compute_high_order_nodes(p,orders)
end
end
function _compute_constant_nodes(p,orders)
@assert all( orders .== 0) "If an order is 0 in some direction, it should be 0 also in the others"
x = compute_own_nodes(p,orders)
facenodes = [Int[] for i in 1:num_faces(p)]
push!(facenodes[end],1)
x, facenodes
end
function _compute_linear_nodes(p)
x = get_vertex_coordinates(p)
facenodes = [Int[] for i in 1:num_faces(p)]
for i in 1:num_vertices(p)
push!(facenodes[i],i)
end
x, facenodes
end
function _compute_high_order_nodes(p::Polytope{D},orders) where D
nodes = Point{D,Float64}[]
facenodes = [Int[] for i in 1:num_faces(p)]
_compute_high_order_nodes_dim_0!(nodes,facenodes,p)
for d in 1:(num_dims(p)-1)
_compute_high_order_nodes_dim_d!(nodes,facenodes,p,orders,Val{d}())
end
_compute_high_order_nodes_dim_D!(nodes,facenodes,p,orders)
(nodes, facenodes)
end
function _compute_high_order_nodes_dim_0!(nodes,facenodes,p)
x = get_vertex_coordinates(p)
k = 1
for vertex in 1:num_vertices(p)
push!(nodes,x[vertex])
push!(facenodes[vertex],k)
k += 1
end
end
@noinline function _compute_high_order_nodes_dim_d!(nodes,facenodes,p,orders,::Val{d}) where d
x = get_vertex_coordinates(p)
offset = get_offset(p,d)
k = length(nodes)+1
for iface in 1:num_faces(p,d)
face = Polytope{d}(p,iface)
face_ref_x = get_vertex_coordinates(face)
face_prebasis = MonomialBasis(Float64,face,1)
change = inv(evaluate(face_prebasis,face_ref_x))
face_shapefuns = change_basis(face_prebasis,change)
face_vertex_ids = get_faces(p,d,0)[iface]
face_x = x[face_vertex_ids]
face_orders = compute_face_orders(p,face,iface,orders)
face_interior_nodes = compute_own_nodes(face,face_orders)
face_high_x = evaluate(face_shapefuns,face_interior_nodes)*face_x
for xi in 1:length(face_high_x)
push!(nodes,face_high_x[xi])
push!(facenodes[iface+offset],k)
k += 1
end
end
end
function _compute_high_order_nodes_dim_D!(nodes,facenodes,p,orders)
k = length(nodes)+1
p_high_x = compute_own_nodes(p,orders)
for xi in 1:length(p_high_x)
push!(nodes,p_high_x[xi])
push!(facenodes[end],k)
k += 1
end
end
_compute_node_permutations(::Polytope{0}, interior_nodes) = [[1]]
function _compute_node_permutations(p, interior_nodes)
vertex_to_coord = get_vertex_coordinates(p)
lbasis = MonomialBasis(Float64,p,1)
change = inv(evaluate(lbasis,vertex_to_coord))
lshapefuns = change_basis(lbasis,change)
perms = get_vertex_permutations(p)
map = evaluate(lshapefuns,interior_nodes)
pvertex_to_coord = similar(vertex_to_coord)
node_perms = Vector{Int}[]
tol = 1.0e-10
for vertex_to_pvertex in perms
node_to_pnode = fill(INVALID_PERM,length(interior_nodes))
pvertex_to_coord[vertex_to_pvertex] = vertex_to_coord
pinterior_nodes = map*pvertex_to_coord
for node in 1:length(interior_nodes)
x = interior_nodes[node]
pnode = findfirst(i->norm(i-x)<tol,pinterior_nodes)
if pnode != nothing
node_to_pnode[node] = pnode
end
end
push!(node_perms,node_to_pnode)
end
node_perms
end
_compute_lagrangian_reffaces(::Type{T},p::Polytope{0},orders) where T = ()
function _compute_lagrangian_reffaces(::Type{T},p::Polytope{D},orders) where {T,D}
reffaces = [ LagrangianRefFE{d}[] for d in 0:D ]
p0 = Polytope{0}(p,1)
reffe0 = LagrangianRefFE(T,p0,())
for vertex in 1:num_vertices(p)
push!(reffaces[0+1],reffe0)
end
offsets = get_offsets(p)
for d in 1:(num_dims(p)-1)
offset = offsets[d+1]
for iface in 1:num_faces(p,d)
face = Polytope{d}(p,iface)
face_orders = compute_face_orders(p,face,iface,orders)
refface = LagrangianRefFE(T,face,face_orders)
push!(reffaces[d+1],refface)
end
end
tuple(reffaces...)
end
# Particular implementation for ExtrusionPolytope
function LagrangianRefFE(p::ExtrusionPolytope)
order = 1
LagrangianRefFE(Float64,p,order)
end
function compute_monomial_basis(::Type{T},p::ExtrusionPolytope{D},orders) where {D,T}
extrusion = Tuple(p.extrusion)
terms = _monomial_terms(extrusion,orders)
MonomialBasis{D}(T,orders,terms)
end
function compute_own_nodes(p::ExtrusionPolytope{D},orders) where D
extrusion = Tuple(p.extrusion)
if all(orders .== 0)
_interior_nodes_order_0(p)
else
_interior_nodes(extrusion,orders)
end
end
function _interior_nodes_order_0(p)
x = get_vertex_coordinates(p)
x0 = sum(x) / length(x)
[x0,]
end
function compute_face_orders(p::ExtrusionPolytope,face::ExtrusionPolytope{D},iface::Int,orders) where D
d = num_dims(face)
offset = get_offset(p,d)
nface = p.dface.nfaces[iface+offset]
face_orders = _eliminate_zeros(Val{D}(),nface.extrusion,orders)
Tuple(face_orders)
end
function _eliminate_zeros(::Val{d},a,o) where d
b = zero(mutable(Point{d,Int}))
D = num_components(a)
k = 1
for i in 1:D
m = a[i]
if (m != 0)
b[k] = o[i]
k += 1
end
end
Point(b)
end
function compute_nodes(p::ExtrusionPolytope{D},orders) where D
_nodes, facenodes = _compute_nodes(p,orders)
if any( orders .== 0)
return (_nodes, facenodes)
end
terms = _coords_to_terms(_nodes,orders)
nodes = _terms_to_coords(terms,orders)
(nodes, facenodes)
end
# Helpers for the ExtrusionPolytope-related implementation
function _monomial_terms(extrusion::NTuple{D,Int},orders) where D
terms = CartesianIndex{D}[]
if D == 0
push!(terms,CartesianIndex(()))
return terms
end
_check_orders(extrusion,orders)
M = mutable(VectorValue{D,Int})
term = zero(M)
_orders = M(orders)
k = 0
_add_terms!(terms,term,extrusion,_orders,D,k)
terms
end
function _interior_nodes(extrusion::NTuple{D,Int},orders) where D
_check_orders(extrusion,orders)
terms = CartesianIndex{D}[]
M = mutable(VectorValue{D,Int})
term = zero(M)
_orders = M(orders)
k = 1
_add_terms!(terms,term,extrusion,_orders,D,k)
_terms_to_coords(terms,orders)
end
function _check_orders(extrusion,orders)
D = length(extrusion)
@assert length(orders) == D "container of orders not long enough"
_orders = collect(orders)
if extrusion[D] == HEX_AXIS
_orders[D] = 0
end
for d in (D-1):-1:1
if (extrusion[d] == HEX_AXIS || d == 1) && _orders[d+1] == 0
_orders[d] = 0
end
end
nz = _orders[_orders .!= 0]
if length(nz) > 1
@assert all(nz .== nz[1]) "The provided anisotropic order is not compatible with polytope topology"
end
nothing
end
function _add_terms!(terms,term,extrusion,orders,dim,k)
_term = copy(term)
_orders = copy(orders)
indexbase = 1
for i in k:(_orders[dim]-k)
_term[dim] = i + indexbase
if dim > 1
if (extrusion[dim] == TET_AXIS) && i != 0
_orders .-= 1
end
_add_terms!(terms,_term,extrusion,_orders,dim-1,k)
else
push!(terms,CartesianIndex(Tuple(_term)))
end
end
end
function _coords_to_terms(coords::Vector{<:Point{D}},orders) where D
indexbase = 1
terms = CartesianIndex{D}[]
P = Point{D,Int}
t = zero(mutable(P))
for x in coords
for d in 1:D
t[d] = round(x[d]*orders[d]) + indexbase
end
term = CartesianIndex(Tuple(t))
push!(terms,term)
end
terms
end
function _terms_to_coords(terms::Vector{CartesianIndex{D}},orders) where D
P = Point{D,Float64}
indexbase = 1
nodes = P[]
x = zero(mutable(P))
for t in terms
for d in 1:D
x[d] = (t[d] - indexbase) / orders[d]
end
node = P(x)
push!(nodes,node)
end
nodes
end
function _extract_nonzeros(mask,values)
b = Int[]
for (m,n) in zip(mask,values)
if (m != 0)
push!(b, n)
end
end
return Tuple(b)
end
# Precomputed instances
"""
const VERTEX1 = LagrangianRefFE(Float64,VERTEX,1)
"""
const VERTEX1 = LagrangianRefFE(Float64,VERTEX,1)
"""
const SEG2 = LagrangianRefFE(Float64,SEGMENT,1)
"""
const SEG2 = LagrangianRefFE(Float64,SEGMENT,1)
"""
const QUAD4 = LagrangianRefFE(Float64,QUAD,1)
"""
const QUAD4 = LagrangianRefFE(Float64,QUAD,1)
"""
const TRI3 = LagrangianRefFE(Float64,TRI,1)
"""
const TRI3 = LagrangianRefFE(Float64,TRI,1)
"""
const TET4 = LagrangianRefFE(Float64,TET,1)
"""
const TET4 = LagrangianRefFE(Float64,TET,1)
"""
const HEX8 = LagrangianRefFE(Float64,HEX,1)
"""
const HEX8 = LagrangianRefFE(Float64,HEX,1)