-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
trainers.py
396 lines (305 loc) · 13 KB
/
trainers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import logging
import os
import sys
from .conversation import Statement, Response
from .utils import print_progress_bar
class Trainer(object):
"""
Base class for all other trainer classes.
"""
def __init__(self, storage, **kwargs):
self.storage = storage
self.logger = logging.getLogger(__name__)
def train(self, *args, **kwargs):
"""
This class must be overridden by a class the inherits from 'Trainer'.
"""
raise self.TrainerInitializationException()
def get_or_create(self, statement_text):
"""
Return a statement if it exists.
Create and return the statement if it does not exist.
"""
statement = self.storage.find(statement_text)
if not statement:
statement = Statement(statement_text)
return statement
class TrainerInitializationException(Exception):
"""
Exception raised when a base class has not overridden
the required methods on the Trainer base class.
"""
def __init__(self, value=None):
default = (
'A training class must be specified before calling train(). ' +
'See http://chatterbot.readthedocs.io/en/stable/training.html'
)
self.value = value or default
def __str__(self):
return repr(self.value)
def _generate_export_data(self):
result = []
for statement in self.storage.filter():
for response in statement.in_response_to:
result.append([response.text, statement.text])
return result
def export_for_training(self, file_path='./export.json'):
"""
Create a file from the database that can be used to
train other chat bots.
"""
import json
export = {'conversations': self._generate_export_data()}
with open(file_path, 'w+') as jsonfile:
json.dumps(export, jsonfile, ensure_ascii=False)
class ListTrainer(Trainer):
"""
Allows a chat bot to be trained using a list of strings
where the list represents a conversation.
"""
def train(self, conversation):
"""
Train the chat bot based on the provided list of
statements that represents a single conversation.
"""
previous_statement_text = None
for conversation_count, text in enumerate(conversation):
print_progress_bar("List Trainer", conversation_count + 1, len(conversation))
statement = self.get_or_create(text)
if previous_statement_text:
statement.add_response(
Response(previous_statement_text)
)
previous_statement_text = statement.text
self.storage.update(statement)
class ChatterBotCorpusTrainer(Trainer):
"""
Allows the chat bot to be trained using data from the
ChatterBot dialog corpus.
"""
def __init__(self, storage, **kwargs):
super(ChatterBotCorpusTrainer, self).__init__(storage, **kwargs)
from .corpus import Corpus
self.corpus = Corpus()
def train(self, *corpus_paths):
# Allow a list of corpora to be passed instead of arguments
if len(corpus_paths) == 1:
if isinstance(corpus_paths[0], list):
corpus_paths = corpus_paths[0]
# Train the chat bot with each statement and response pair
for corpus_path in corpus_paths:
corpora = self.corpus.load_corpus(corpus_path)
corpus_files = self.corpus.list_corpus_files(corpus_path)
for corpus_count, corpus in enumerate(corpora):
for conversation_count, conversation in enumerate(corpus):
print_progress_bar(
str(os.path.basename(corpus_files[corpus_count])) + " Training",
conversation_count + 1,
len(corpus)
)
previous_statement_text = None
for text in conversation:
statement = self.get_or_create(text)
if previous_statement_text:
statement.add_response(
Response(previous_statement_text)
)
previous_statement_text = statement.text
self.storage.update(statement)
class TwitterTrainer(Trainer):
"""
Allows the chat bot to be trained using data
gathered from Twitter.
:param random_seed_word: The seed word to be used to get random tweets from the Twitter API.
This parameter is optional. By default it is the word 'random'.
"""
def __init__(self, storage, **kwargs):
super(TwitterTrainer, self).__init__(storage, **kwargs)
from twitter import Api as TwitterApi
# The word to be used as the first search term when searching for tweets
self.random_seed_word = kwargs.get('random_seed_word', 'random')
self.api = TwitterApi(
consumer_key=kwargs.get('twitter_consumer_key'),
consumer_secret=kwargs.get('twitter_consumer_secret'),
access_token_key=kwargs.get('twitter_access_token_key'),
access_token_secret=kwargs.get('twitter_access_token_secret')
)
def random_word(self, base_word):
"""
Generate a random word using the Twitter API.
Search twitter for recent tweets containing the term 'random'.
Then randomly select one word from those tweets and do another
search with that word. Return a randomly selected word from the
new set of results.
"""
import random
random_tweets = self.api.GetSearch(term=base_word, count=5)
random_words = self.get_words_from_tweets(random_tweets)
random_word = random.choice(list(random_words))
tweets = self.api.GetSearch(term=random_word, count=5)
words = self.get_words_from_tweets(tweets)
word = random.choice(list(words))
return word
def get_words_from_tweets(self, tweets):
"""
Given a list of tweets, return the set of
words from the tweets.
"""
words = set()
for tweet in tweets:
tweet_words = tweet.text.split()
for word in tweet_words:
# If the word contains only letters with a length from 4 to 9
if word.isalpha() and len(word) > 3 and len(word) <= 9:
words.add(word)
return words
def get_statements(self):
"""
Returns list of random statements from the API.
"""
from twitter import TwitterError
statements = []
# Generate a random word
random_word = self.random_word(self.random_seed_word)
self.logger.info(u'Requesting 50 random tweets containing the word {}'.format(random_word))
tweets = self.api.GetSearch(term=random_word, count=50)
for tweet in tweets:
statement = Statement(tweet.text)
if tweet.in_reply_to_status_id:
try:
status = self.api.GetStatus(tweet.in_reply_to_status_id)
statement.add_response(Response(status.text))
statements.append(statement)
except TwitterError as error:
self.logger.warning(str(error))
self.logger.info('Adding {} tweets with responses'.format(len(statements)))
return statements
def train(self):
for _ in range(0, 10):
statements = self.get_statements()
for statement in statements:
self.storage.update(statement)
class UbuntuCorpusTrainer(Trainer):
"""
Allow chatbots to be trained with the data from
the Ubuntu Dialog Corpus.
"""
def __init__(self, storage, **kwargs):
super(UbuntuCorpusTrainer, self).__init__(storage, **kwargs)
self.data_download_url = kwargs.get(
'ubuntu_corpus_data_download_url',
'http://cs.mcgill.ca/~jpineau/datasets/ubuntu-corpus-1.0/ubuntu_dialogs.tgz'
)
self.data_directory = kwargs.get(
'ubuntu_corpus_data_directory',
'./data/'
)
self.extracted_data_directory = os.path.join(
self.data_directory, 'ubuntu_dialogs'
)
# Create the data directory if it does not already exist
if not os.path.exists(self.data_directory):
os.makedirs(self.data_directory)
def is_downloaded(self, file_path):
"""
Check if the data file is already downloaded.
"""
if os.path.exists(file_path):
self.logger.info('File is already downloaded')
return True
return False
def is_extracted(self, file_path):
"""
Check if the data file is already extracted.
"""
if os.path.isdir(file_path):
self.logger.info('File is already extracted')
return True
return False
def download(self, url, show_status=True):
"""
Download a file from the given url.
Show a progress indicator for the download status.
Based on: http://stackoverflow.com/a/15645088/1547223
"""
import requests
file_name = url.split('/')[-1]
file_path = os.path.join(self.data_directory, file_name)
# Do not download the data if it already exists
if self.is_downloaded(file_path):
return file_path
with open(file_path, 'wb') as open_file:
print('Downloading %s' % url)
response = requests.get(url, stream=True)
total_length = response.headers.get('content-length')
if total_length is None:
# No content length header
open_file.write(response.content)
else:
download = 0
total_length = int(total_length)
for data in response.iter_content(chunk_size=4096):
download += len(data)
open_file.write(data)
if show_status:
done = int(50 * download / total_length)
sys.stdout.write('\r[%s%s]' % ('=' * done, ' ' * (50 - done)))
sys.stdout.flush()
# Add a new line after the download bar
sys.stdout.write('\n')
print('Download location: %s' % file_path)
return file_path
def extract(self, file_path):
"""
Extract a tar file at the specified file path.
"""
import tarfile
print('Extracting {}'.format(file_path))
if not os.path.exists(self.extracted_data_directory):
os.makedirs(self.extracted_data_directory)
def track_progress(members):
sys.stdout.write('.')
for member in members:
# This will be the current file being extracted
yield member
with tarfile.open(file_path) as tar:
tar.extractall(path=self.extracted_data_directory, members=track_progress(tar))
self.logger.info('File extracted to {}'.format(self.extracted_data_directory))
return True
def train(self):
import glob
import csv
# Download and extract the Ubuntu dialog corpus if needed
corpus_download_path = self.download(self.data_download_url)
# Extract if the directory doesn not already exists
if not self.is_extracted(self.extracted_data_directory):
self.extract(corpus_download_path)
extracted_corpus_path = os.path.join(
self.extracted_data_directory,
'**', '**', '*.tsv'
)
file_kwargs = {}
if sys.version_info[0] > 2:
# Specify the encoding in Python versions 3 and up
file_kwargs['encoding'] = 'utf-8'
# WARNING: This might fail to read a unicode corpus file in Python 2.x
for file in glob.iglob(extracted_corpus_path):
self.logger.info('Training from: {}'.format(file))
with open(file, 'r', **file_kwargs) as tsv:
reader = csv.reader(tsv, delimiter='\t')
previous_statement_text = None
for row in reader:
if len(row) > 0:
text = row[3]
statement = self.get_or_create(text)
print(text, len(row))
statement.add_extra_data('datetime', row[0])
statement.add_extra_data('speaker', row[1])
if row[2].strip():
statement.add_extra_data('addressing_speaker', row[2])
if previous_statement_text:
statement.add_response(
Response(previous_statement_text)
)
previous_statement_text = statement.text
self.storage.update(statement)