forked from mcleavey/musical-neural-net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
critic.py
executable file
·111 lines (84 loc) · 3.91 KB
/
critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from critic_utils import *
from utils import *
import dill as pickle
import argparse
PATH = Path('./data/')
CRITIC_PATH = Path('./critic_data/')
LOAD_MOD_PATH = Path('./models/generator/')
OUT_MOD_PATH = Path('./models/critic/')
OUT_MOD_PATH.mkdir(parents=True, exist_ok=True)
def train(model, training, use_pretrain, epochs, bs):
TEXT=pickle.load(open(f'{LOAD_MOD_PATH}/{model}_text.pkl','rb'))
params=pickle.load(open(f'{LOAD_MOD_PATH}/{model}_params.pkl','rb'))
MUSIC_LABEL = data.Field(sequential=False)
splits = MusicDataset.splits(TEXT, MUSIC_LABEL, CRITIC_PATH)
md = TextData.from_splits(PATH, splits, bs)
opt_fn = partial(optim.Adam, betas=(0.7, 0.99))
m = md.get_model(opt_fn, 1500, bptt=params["bptt"], emb_sz=params["em_sz"], n_hid=params["nh"], n_layers=params["nl"],
dropout=0.1, dropouti=0.4, wdrop=0.5, dropoute=0.05, dropouth=0.3)
m.reg_fn = partial(seq2seq_reg, alpha=2, beta=1)
m.clip=25.
if use_pretrain:
model_name=model+"_"+training
print("Loading weights: "+model)
m.load_encoder(model_name)
m.freeze_to(-1)
train_and_save(m, 3e-4, 1, model+"_fine_tune.pth", metrics=[accuracy])
lrs=[3e-3, 3e-4, 3e-6, 3e-8]
trainings=["_light.pth", "_med.pth", "_full.pth", "_extra.pth"]
save_names=[model+b for b in trainings]
save_names=[OUT_MOD_PATH/s for s in save_names]
for i in range(len(lrs)):
train_and_save(m, lrs[i], epochs, save_names[i], metrics=[accuracy])
def best_and_worst(num_samples=2, bs=32):
best_eval=-5
worst_eval=5
best_music=""
worst_music=""
for i in range(num_samples):
random_choice_frequency=random.random()*.5+.5
trunc_size=random.randint(2,3)
prompts,results = create_generation_batch(bs=bs, random_choice_frequency=random_choice_frequency, trunc_size=trunc_size)
s=[music_tokenizer(result)[:1992] for result in results]
t=TEXT.numericalize(s)
preds=m3.model.forward(t)[0][:][:].data
print("Generation: "+str(i))
for j in range(bs):
score=preds[j][1]-preds[j][2]
if score>best_eval:
best_eval=score
best_music=results[j]
if score<worst_eval:
worst_eval=score
worst_music=results[j]
f=open(str(PATH/'best_worst')+'/best.txt', 'w')
f.write(best_music)
f.close()
f=open(str(PATH/'best_worst')+'/worst.txt', 'w')
f.write(worst_music)
f.close()
return best_music, best_eval, worst_music, worst_eval
def create_best_worst():
best_music, best_eval, worst_music, worst_eval=best_and_worst(1)
fbest="smallnet_best14.mid"
write_to_mp3(best_music_total, fbest, 12)
fbestb="smallnet_best14b.mid"
write_to_mp3(best_music_real, fbestb, 12)
fworst="smallnet_worst14.mid"
write_to_mp3(worst_music_total, fworst, 12)
fworstb="smallnet_worst14b.mid"
write_to_mp3(worst_music_real, fworstb, 12)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-model", help="Generator model in ./models/generator", required=True)
parser.add_argument("--training", help="Training level (light, med, full, extra - default light)")
parser.set_defaults(training="light")
parser.add_argument("--pretrain", dest="pretrain", action="store_true", help="Starts with generator model weights (default is random initialization)")
parser.set_defaults(pretrain=False)
parser.add_argument("--epochs", dest="epochs", help="Epochs per training level (default 3)", type=int)
parser.set_defaults(epochs=3)
parser.add_argument("--bs", dest="bs", help="Batch size (default 32)", type=int)
parser.set_defaults(bs=32)
args = parser.parse_args()
random.seed(os.urandom(10))
train(args.model, args.training, args.pretrain, args.epochs, args.bs)