-
Notifications
You must be signed in to change notification settings - Fork 7
/
makes_plots.py
executable file
·299 lines (241 loc) · 9.04 KB
/
makes_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#!usr/bin/env python
import os
import glob
import re
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import cPickle as pickle
from sklearn import metrics
from scipy.stats import chi2, ncx2
from scipy import interpolate, special
def sigma(n, tp):
"""
:param tp:
:param n:
:return:
"""
return np.sqrt(tp*(1.-tp)/n)
def CNN_ROC(CNN_path, snr, run):
"""
calculate roc curve for cnn results
"""
targets = np.load('{0}/SNR{1}/run{2}/targets.npy'.format(CNN_path,snr,run))[:,1]
preds = np.load('{0}/SNR{1}/run{2}/preds.npy'.format(CNN_path,snr,run))[:,1]
assert len(preds) == len(targets)
FDP, TDP, _ = metrics.roc_curve(targets, preds)
FDP_error = [sigma(len(targets)/2., t) for t in FDP]
TDP_error = [sigma(len(targets)/2., t) for t in TDP]
return FDP, TDP, FDP_error, TDP_error
def accuracy(FDP,TDP,TDP_error, threshold):
"""
calculate accuracy(efficiency) given fdp and tdp
"""
fx = interpolate.interp1d(FDP,TDP)
fx_e_neg = interpolate.interp1d(FDP,TDP-TDP_error)
fx_e_pos = interpolate.interp1d(FDP,TDP+TDP_error)
acc = fx(threshold)
acc_e_neg = fx_e_neg(threshold)
acc_e_pos = fx_e_pos(threshold)
return acc, acc_e_neg, acc_e_pos
def process_mf_results(mf_path, mf_seed, snr):
"""
get snr values from mf analysis
"""
dir = '{0}/results/full_bank_snr{1}/seed_{2}'.format(mf_path, snr, mf_seed)
#print(dir)
#
rho_values = np.array([])
for i in range(0,2):
rho_files = sorted(glob.glob('{0}/ts_{1}/rho_values_*.pickle'.format(dir,i)))
rho_files = sorted(rho_files, key=lambda a: int(re.split(r'[_-]+', a)[-2]))
for rf in rho_files:
with open(rf, 'rb') as rfp:
rv = pickle.load(rfp)
rho_values = np.concatenate((rho_values,rv))
return rho_values
def load_flags(flags_path, snr, type):
"""
load flags for dataset
"""
return np.load('{0}/flags_{1}_snr{2}.npy'.format(flags_path, type, snr))
def mf_roc(cnn_path, snr, rho_values):
flags = np.load('{0}/SNR{1}/run0/targets.npy'.format(cnn_path, snr))
noise = rho_values[np.where(flags[:,0]==1)]
signals = rho_values[np.where(flags[:,1]==1)]
thresholds = np.linspace(0,12,1000)
TP, _, _, FP = cal_roc(noise,signals, thresholds)
FP_error = [sigma(len(signals), t) for t in FP]
TP_error = [sigma(len(signals), t) for t in TP]
return TP, FP, TP_error, FP_error
def cal_roc(noise, signals, thresholds):
# lists to populate
TP = []
TN = []
FP = []
FN = []
# loop over thresholds
for t in thresholds:
TP.append(len(signals[signals > t]))
TN.append(len(noise[noise < t]))
FN.append(len(signals[signals < t]))
FP.append(len(noise[noise > t]))
Nsig = float(len(signals))
Nnoise = float(len(noise))
TP = np.array(TP)/Nsig
FN = np.array(FN)/Nsig
TN = np.array(TN)/Nnoise
FP = np.array(FP)/Nnoise
return TP, FN, TN, FP
def interp_sig(snr, tdp, threshold, c):
"""
use spline interpolation to fit a line
uses sigmoid to map (0,1) to (-inf, inf) and vice-versa
:param snr:
:param rho:
:param threshold:
:return:
"""
# assume start with NaN
flag = True
while flag:
snr_new, tdp_new = interp_loop(snr, tdp, threshold, c)
if not np.isnan(tdp_new).any():
flag = False
else:
snr = snr[1:]
tdp = tdp[1:]
if np.isnan(tdp_new).any():
print('Failed to avoid NaNs')
return snr_new, tdp_new
def interp_loop(snr, tdp, threshold, c):
"""
function to loop over to peform spline interpolation
:param snr:
:param rho:
:param threshold:
:param c: fuzzfactor
"""
# find min value
min_tdp = np.min(tdp)
# take log of data to avoid negative values
tmp_tdp = special.logit(tdp - min_tdp + c)
# interpolate with spline interpolation
tck = interpolate.splrep(snr, tmp_tdp)
# new x and y values
snr_new = np.linspace(1, 10, 1e3)
tmp_tdp_new = interpolate.splev(snr_new, tck, der=0)
# return to linear space
tdp_new = special.expit(tmp_tdp_new) + min_tdp - c
return snr_new, tdp_new
# path to MF results
mf_path = './final_mf_results'
# CNN path
cnn_path = './final_runs'
# path to flags (previously generated files)
flags_path = './flags'
type = 'astromass'
# fuzz factors for each thresholds
ffs = [0.5e-3, 0.5e-3, 0.5e-3]
snrs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
runs = [1,1,1,1,1,1,1,3,1,1]
mf_snrs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
mf_seeds = [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]
thresholds = [0.1, 0.01, 0.001]
# empty lists to populate
MF_ROCs = []
CNN_ROCs = []
MF_acc = []
CNN_acc = []
# calcualte ROC curves and accuracy
for snr, run in zip(snrs, runs):
FDP, TDP, FDP_error, TDP_error = CNN_ROC(cnn_path, snr, run)
CNN_ROCs.append([FDP, TDP, FDP_error, TDP_error])
CNN_acc.append([accuracy(FDP, TDP, TDP_error, t) for t in thresholds])
for snr, mf_seed in zip(mf_snrs ,mf_seeds):
rho_values = process_mf_results(mf_path, mf_seed, snr)
flags = load_flags(flags_path, snr, type)
MF_TDP, MF_FDP, MF_TDP_error, MF_FDP_error = mf_roc(cnn_path, snr, rho_values)
MF_ROCs.append([MF_FDP, MF_TDP, MF_FDP_error, MF_TDP_error])
MF_acc.append([accuracy(MF_FDP, MF_TDP, MF_TDP_error, t) for t in thresholds])
# colours and line styles for plots
colours = ['indigo', 'c', 'darkorange', 'indigo', 'c', 'darkorange', 'indigo', 'c', 'darkorange']
linestyles = ['-', '--', '-.', ':']
lineArtist = plt.Line2D((0, 1), (0, 0), color='k', linestyle='-')
dashArtist = plt.Line2D((0, 1), (0, 0), color='k', linestyle='--')
dashdotArtist = plt.Line2D((0, 1), (0, 0), color='k', linestyle='-.')
dotArtist = plt.Line2D((0,1), (0, 0), color = 'k', linestyle = ':')
c1Artist = plt.Line2D((0, 1), (0, 0), color=colours[0], linestyle='', marker='o')
c2Artist = plt.Line2D((0, 1), (0, 0), color=colours[1], linestyle='', marker='o')
c3Artist = plt.Line2D((0, 1), (0, 0), color=colours[2], linestyle='', marker='o')
# handles for different plots
handles = [c1Artist, c2Artist, lineArtist, dashArtist, dashdotArtist]
acc_handles = [c1Artist, c2Artist, lineArtist, dashArtist, dashdotArtist]
ROC_labels = ['CNN', 'Matched filtering', 'SNR2', 'SNR4', 'SNR6']
acc_labels = ['CNN', 'Matched filtering', 'FAP = 0.1', 'FAP = 0.01', 'FAP = 0.001']
# plot roc curves
fig1 = plt.figure()
ax1 = fig1.add_subplot(1, 1, 1)
ax1.set_rasterization_zorder(1)
cmap_colours = plt.cm.jet_r(np.linspace(0, 1, 10))
# choose snrs to plot
to_plot = [1,3,5]
for i, d in enumerate([CNN_ROCs[n] for n in to_plot]):
ax1.plot(d[0], d[1], c=colours[0], linestyle=linestyles[i], label='CNN snr {0}'.format(snrs[i]))
ax1.fill_between(d[0], d[1]+d[3], d[1]-d[3], alpha=0.2, facecolor=colours[0], zorder=0)
for i, d in enumerate([MF_ROCs[n] for n in to_plot]):
ax1.plot(d[0], d[1], c=colours[1], linestyle=linestyles[i], label='mf snr {0}'.format(mf_snrs[i]))
ax1.fill_between(d[0], d[1]+d[3], d[1]-d[3], alpha=0.2, facecolor=colours[1], zorder=0)
ax1.set_xscale('log')
ax1.set_yscale('log')
ax1.set_xlim(1e-4, 1)
ax1.set_ylim(1e-4, 1)
ax1.legend(handles, ROC_labels)
ax1.set_xlabel('False alarm probability')
ax1.set_ylabel('True alarm probability')
# save all possible versions
fig1.savefig('ROC_curves.png', dpi=1200)
fig1.savefig('ROC_curves.pdf', dpi=1200)
fig1.savefig('ROC_curves.eps', rasterized=True, dpi=1200)
fig1.savefig('ROC_curves400.eps', rasterized=True, dpi=400)
# plot efficiency curve
fig2 = plt.figure()
ax2 = fig2.add_subplot(1, 1, 1, )
ax2.set_rasterization_zorder(1)
for i in range(len(thresholds)):
# points to plot
cnn = np.asarray([a[i][0] for a in CNN_acc])
# line fit
snr_cnn, eff_cnn = interp_sig(snrs, cnn, thresholds[i], ffs[i])
# points to plot
mf = np.asarray([a[i][0] for a in MF_acc])
# line fit
snr_mf, eff_mf = interp_sig(snrs, mf, thresholds[i], ffs[1])
# errors
d_eff_cnn = [sigma(1e4, e) for e in eff_cnn]
d_eff_mf = [sigma(1e4, e) for e in eff_mf]
# plot points for cnn
ax2.plot(snrs, cnn, c=colours[0], marker = 'o', linestyle='')
# plot line fit for cnn
ax2.plot(snr_cnn, eff_cnn, c=colours[0], linestyle=linestyles[i])
# plot error region for cnn
ax2.fill_between(snr_cnn, eff_cnn - d_eff_cnn , eff_cnn + d_eff_cnn, facecolor=colours[0], alpha=0.2, zorder=0)
# plot points for mf
ax2.plot(mf_snrs, mf, c=colours[1], marker = 'o', linestyle='')
# plot line fit for mf
ax2.plot(snr_mf, eff_mf, c=colours[1], linestyle=linestyles[i])
# plot error region for mf
ax2.fill_between(snr_mf, eff_mf - d_eff_mf, eff_mf + d_eff_mf, facecolor=colours[1], alpha=0.2, zorder=0)
ax2.legend(acc_handles, acc_labels)
ax2.set_xticks(snrs)
ax2.grid()
ax2.set_xlabel(r'$\rho_{\mathrm{opt}}$')
ax2.set_ylabel('True alarm probability')
ax2.set_xlim(snrs[0], snrs[-1])
ax2.set_ylim(0, 1)
# save all possible versions
fig2.savefig('efficiency.png', dpi=1200)
fig2.savefig('efficiency.pdf', dpi=1200)
fig2.savefig('efficiency.eps', rasterized=True, dpi=1200)
fig2.savefig('efficiency400.eps', rasterized=True, dpi=400)