-
Notifications
You must be signed in to change notification settings - Fork 6
/
core.py
140 lines (105 loc) · 4.98 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import scipy.signal
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.normal import Normal
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def combined_shape(length, shape=None):
if shape is None:
return (length,)
return (length, shape) if np.isscalar(shape) else (length, *shape)
def mlp(sizes, activation, output_activation=nn.Identity):
layers = []
for j in range(len(sizes)-1):
act = activation if j < len(sizes)-2 else output_activation
layers += [nn.Linear(sizes[j], sizes[j+1]), act()]
return nn.Sequential(*layers)
def count_vars(module):
return sum([np.prod(p.shape) for p in module.parameters()])
LOG_STD_MAX = 2
LOG_STD_MIN = -20
class SquashedGaussianMLPActor(nn.Module):
def __init__(self, obs_dim, act_dim, hidden_sizes, activation, act_limit):
super().__init__()
self.net = mlp([obs_dim] + list(hidden_sizes), activation, activation)
self.mu_layer = nn.Linear(hidden_sizes[-1], act_dim)
self.log_std_layer = nn.Linear(hidden_sizes[-1], act_dim)
self.act_limit = act_limit
def forward(self, obs, deterministic=False, with_logprob=True):
net_out = self.net(obs)
mu = self.mu_layer(net_out)
log_std = self.log_std_layer(net_out)
log_std = torch.clamp(log_std, LOG_STD_MIN, LOG_STD_MAX)
std = torch.exp(log_std)
# Pre-squash distribution and sample
pi_distribution = Normal(mu, std)
if deterministic:
# Only used for evaluating policy at test time.
pi_action = mu
else:
pi_action = pi_distribution.rsample()
if with_logprob:
# Compute logprob from Gaussian, and then apply correction for Tanh squashing.
# NOTE: The correction formula is a little bit magic. To get an understanding
# of where it comes from, check out the original SAC paper (arXiv 1801.01290)
# and look in appendix C. This is a more numerically-stable equivalent to Eq 21.
# Try deriving it yourself as a (very difficult) exercise. :)
logp_pi = pi_distribution.log_prob(pi_action).sum(axis=-1)
logp_pi -= (2*(np.log(2) - pi_action - F.softplus(-2*pi_action))).sum(axis=1)
else:
logp_pi = None
pi_action = torch.tanh(pi_action)
pi_action = self.act_limit * pi_action
return pi_action, logp_pi
def get_logprob(self,obs, actions):
net_out = self.net(obs)
mu = self.mu_layer(net_out)
# log_std = torch.sigmoid(self.log_std_logits)
log_std = self.log_std_layer(net_out)
# log_std = self.min_log_std + log_std * (
# self.max_log_std - self.min_log_std)
std = torch.exp(log_std)
pi_distribution = Normal(mu, std)
# import ipdb;ipdb.set_trace()
actions_u = torch.log1p(2*actions/(1-actions)+1e-7) / 2
# torch.atanh(actions)
logp_pi = pi_distribution.log_prob(actions_u).sum(axis=-1)
logp_pi -= (2*(np.log(2) - actions_u - F.softplus(-2*actions_u))).sum(axis=1)
return logp_pi
class MLPVFunction(nn.Module):
def __init__(self, obs_dim, act_dim, hidden_sizes, activation):
super().__init__()
self.v = mlp([obs_dim] + list(hidden_sizes) + [1], activation)
def forward(self, obs):
v = self.v(obs)
return torch.squeeze(v, -1) # Critical to ensure q has right shape.
class MLPQFunction(nn.Module):
def __init__(self, obs_dim, act_dim, hidden_sizes, activation):
super().__init__()
self.q = mlp([obs_dim + act_dim] + list(hidden_sizes) + [1], activation)
def forward(self, obs, act):
q = self.q(torch.cat([obs, act], dim=-1))
return torch.squeeze(q, -1) # Critical to ensure q has right shape.
class MLPActorCritic(nn.Module):
def __init__(self, observation_space, action_space, hidden_sizes=(256,256),special_policy=None,
activation=nn.ReLU):
super().__init__()
obs_dim = observation_space.shape[0]
act_dim = action_space.shape[0]
act_limit = action_space.high[0]
# build policy and value functions
self.pi = SquashedGaussianMLPActor(obs_dim, act_dim, hidden_sizes, activation, act_limit).to(device)
self.q1 = MLPQFunction(obs_dim, act_dim, hidden_sizes, activation).to(device)
self.q2 = MLPQFunction(obs_dim, act_dim, hidden_sizes, activation).to(device)
self.v = MLPVFunction(obs_dim, act_dim, hidden_sizes, activation).to(device)
def act_batch(self, obs, deterministic=False,with_logprob=False):
with torch.no_grad():
a, logp = self.pi(obs, deterministic, True)
if with_logprob:
return a,logp
return a
def act(self, obs, deterministic=False):
with torch.no_grad():
a, _ = self.pi(obs, deterministic, False)
return a.cpu().data.numpy().flatten()