-
Notifications
You must be signed in to change notification settings - Fork 139
/
Unboxed.hs
2031 lines (1742 loc) · 63.8 KB
/
Unboxed.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{-# LANGUAGE CPP #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
-- |
-- Module : Data.Vector.Unboxed
-- Copyright : (c) Roman Leshchinskiy 2009-2010
-- Alexey Kuleshevich 2020-2022
-- Aleksey Khudyakov 2020-2022
-- Andrew Lelechenko 2020-2022
-- License : BSD-style
--
-- Maintainer : Haskell Libraries Team <[email protected]>
-- Stability : experimental
-- Portability : non-portable
--
-- Adaptive unboxed vectors. The implementation is based on type families
-- and picks an efficient, specialised representation for every element type.
-- For example, unboxed vectors of pairs are represented as pairs of unboxed
-- vectors.
--
-- Implementing unboxed vectors for new data types can be very easy. Here is
-- how the library does this for 'Complex' by simply wrapping vectors of
-- pairs.
--
-- @
-- newtype instance 'MVector' s ('Complex' a) = MV_Complex ('MVector' s (a,a))
-- newtype instance 'Vector' ('Complex' a) = V_Complex ('Vector' (a,a))
--
-- instance ('RealFloat' a, 'Unbox' a) => 'Data.Vector.Generic.Mutable.MVector' 'MVector' ('Complex' a) where
-- {-\# INLINE basicLength \#-}
-- basicLength (MV_Complex v) = 'Data.Vector.Generic.Mutable.basicLength' v
-- ...
--
-- instance ('RealFloat' a, 'Unbox' a) => Data.Vector.Generic.Vector 'Vector' ('Complex' a) where
-- {-\# INLINE basicLength \#-}
-- basicLength (V_Complex v) = Data.Vector.Generic.basicLength v
-- ...
--
-- instance ('RealFloat' a, 'Unbox' a) => 'Unbox' ('Complex' a)
-- @
--
-- For newtypes, defining instances is easier since one could use
-- @GeneralizedNewtypeDeriving@ in order to derive instances for
-- 'Data.Vector.Generic.Vector' and 'Data.Vector.Generic.Mutable.MVector',
-- since they're very cumbersome to write by hand:
--
-- >>> :set -XTypeFamilies -XStandaloneDeriving -XMultiParamTypeClasses -XGeneralizedNewtypeDeriving
-- >>>
-- >>> import qualified Data.Vector.Generic as VG
-- >>> import qualified Data.Vector.Generic.Mutable as VGM
-- >>> import qualified Data.Vector.Unboxed as VU
-- >>>
-- >>> newtype Foo = Foo Int
-- >>>
-- >>> newtype instance VU.MVector s Foo = MV_Int (VU.MVector s Int)
-- >>> newtype instance VU.Vector Foo = V_Int (VU.Vector Int)
-- >>> deriving instance VGM.MVector VU.MVector Foo
-- >>> deriving instance VG.Vector VU.Vector Foo
-- >>> instance VU.Unbox Foo
module Data.Vector.Unboxed (
-- * Unboxed vectors
Vector(V_UnboxAs, V_UnboxViaPrim), MVector(..), Unbox,
-- * Accessors
-- ** Length information
length, null,
-- ** Indexing
(!), (!?), head, last,
unsafeIndex, unsafeHead, unsafeLast,
-- ** Monadic indexing
indexM, headM, lastM,
unsafeIndexM, unsafeHeadM, unsafeLastM,
-- ** Extracting subvectors (slicing)
slice, init, tail, take, drop, splitAt, uncons, unsnoc,
unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-- * Construction
-- ** Initialisation
empty, singleton, replicate, generate, iterateN,
-- ** Monadic initialisation
replicateM, generateM, iterateNM, create, createT,
-- ** Unfolding
unfoldr, unfoldrN, unfoldrExactN,
unfoldrM, unfoldrNM, unfoldrExactNM,
constructN, constructrN,
-- ** Enumeration
enumFromN, enumFromStepN, enumFromTo, enumFromThenTo,
-- ** Concatenation
cons, snoc, (++), concat,
-- ** Restricting memory usage
force,
-- * Modifying vectors
-- ** Bulk updates
(//), update, update_,
unsafeUpd, unsafeUpdate, unsafeUpdate_,
-- ** Accumulations
accum, accumulate, accumulate_,
unsafeAccum, unsafeAccumulate, unsafeAccumulate_,
-- ** Permutations
reverse, backpermute, unsafeBackpermute,
-- ** Safe destructive updates
modify,
-- * Elementwise operations
-- ** Indexing
indexed,
-- ** Mapping
map, imap, concatMap,
-- ** Monadic mapping
mapM, imapM, mapM_, imapM_, forM, forM_,
iforM, iforM_,
-- ** Zipping
zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
izipWith, izipWith3, izipWith4, izipWith5, izipWith6,
zip, zip3, zip4, zip5, zip6,
-- ** Monadic zipping
zipWithM, izipWithM, zipWithM_, izipWithM_,
-- ** Unzipping
unzip, unzip3, unzip4, unzip5, unzip6,
-- * Working with predicates
-- ** Filtering
filter, ifilter, filterM, uniq,
mapMaybe, imapMaybe,
mapMaybeM, imapMaybeM,
takeWhile, dropWhile,
-- ** Partitioning
partition, unstablePartition, partitionWith, span, break, spanR, breakR, groupBy, group,
-- ** Searching
elem, notElem, find, findIndex, findIndexR, findIndices, elemIndex, elemIndices,
-- * Folding
foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1',
ifoldl, ifoldl', ifoldr, ifoldr',
foldMap, foldMap',
-- ** Specialised folds
all, any, and, or,
sum, product,
maximum, maximumBy, maximumOn,
minimum, minimumBy, minimumOn,
minIndex, minIndexBy, maxIndex, maxIndexBy,
-- ** Monadic folds
foldM, ifoldM, foldM', ifoldM',
fold1M, fold1M', foldM_, ifoldM_,
foldM'_, ifoldM'_, fold1M_, fold1M'_,
-- * Scans
prescanl, prescanl',
postscanl, postscanl',
scanl, scanl', scanl1, scanl1',
iscanl, iscanl',
prescanr, prescanr',
postscanr, postscanr',
scanr, scanr', scanr1, scanr1',
iscanr, iscanr',
-- ** Comparisons
eqBy, cmpBy,
-- * Conversions
-- ** Lists
toList, fromList, fromListN,
-- ** Other vector types
G.convert,
-- ** Mutable vectors
freeze, thaw, copy, unsafeFreeze, unsafeThaw, unsafeCopy,
-- ** Deriving via
UnboxViaPrim(..),
As(..),
IsoUnbox(..)
) where
import Data.Vector.Unboxed.Base
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Fusion.Bundle as Bundle
import Data.Vector.Fusion.Util ( delayed_min )
import Control.Monad.ST ( ST )
import Control.Monad.Primitive
import Prelude
( Eq, Ord, Num, Enum, Monoid, Traversable, Monad, Read, Show, Bool, Ordering(..), Int, Maybe, Either
, compare, mempty, mappend, mconcat, showsPrec
, (<), (<=), (>), (>=), (==), (/=) )
import Text.Read ( Read(..), readListPrecDefault )
import Data.Semigroup ( Semigroup(..) )
import qualified GHC.Exts as Exts (IsList(..))
#define NOT_VECTOR_MODULE
#include "vector.h"
-- See http://trac.haskell.org/vector/ticket/12
instance (Unbox a, Eq a) => Eq (Vector a) where
{-# INLINE (==) #-}
xs == ys = Bundle.eq (G.stream xs) (G.stream ys)
-- See http://trac.haskell.org/vector/ticket/12
instance (Unbox a, Ord a) => Ord (Vector a) where
{-# INLINE compare #-}
compare xs ys = Bundle.cmp (G.stream xs) (G.stream ys)
{-# INLINE (<) #-}
xs < ys = Bundle.cmp (G.stream xs) (G.stream ys) == LT
{-# INLINE (<=) #-}
xs <= ys = Bundle.cmp (G.stream xs) (G.stream ys) /= GT
{-# INLINE (>) #-}
xs > ys = Bundle.cmp (G.stream xs) (G.stream ys) == GT
{-# INLINE (>=) #-}
xs >= ys = Bundle.cmp (G.stream xs) (G.stream ys) /= LT
instance Unbox a => Semigroup (Vector a) where
{-# INLINE (<>) #-}
(<>) = (++)
{-# INLINE sconcat #-}
sconcat = G.concatNE
instance Unbox a => Monoid (Vector a) where
{-# INLINE mempty #-}
mempty = empty
{-# INLINE mappend #-}
mappend = (<>)
{-# INLINE mconcat #-}
mconcat = concat
instance (Show a, Unbox a) => Show (Vector a) where
showsPrec = G.showsPrec
instance (Read a, Unbox a) => Read (Vector a) where
readPrec = G.readPrec
readListPrec = readListPrecDefault
instance (Unbox e) => Exts.IsList (Vector e) where
type Item (Vector e) = e
fromList = fromList
fromListN = fromListN
toList = toList
-- Length information
-- ------------------
-- | /O(1)/ Yield the length of the vector.
length :: Unbox a => Vector a -> Int
{-# INLINE length #-}
length = G.length
-- | /O(1)/ Test whether a vector is empty.
null :: Unbox a => Vector a -> Bool
{-# INLINE null #-}
null = G.null
-- Indexing
-- --------
-- | O(1) Indexing.
(!) :: Unbox a => Vector a -> Int -> a
{-# INLINE (!) #-}
(!) = (G.!)
-- | O(1) Safe indexing.
(!?) :: Unbox a => Vector a -> Int -> Maybe a
{-# INLINE (!?) #-}
(!?) = (G.!?)
-- | /O(1)/ First element.
head :: Unbox a => Vector a -> a
{-# INLINE head #-}
head = G.head
-- | /O(1)/ Last element.
last :: Unbox a => Vector a -> a
{-# INLINE last #-}
last = G.last
-- | /O(1)/ Unsafe indexing without bounds checking.
unsafeIndex :: Unbox a => Vector a -> Int -> a
{-# INLINE unsafeIndex #-}
unsafeIndex = G.unsafeIndex
-- | /O(1)/ First element, without checking if the vector is empty.
unsafeHead :: Unbox a => Vector a -> a
{-# INLINE unsafeHead #-}
unsafeHead = G.unsafeHead
-- | /O(1)/ Last element, without checking if the vector is empty.
unsafeLast :: Unbox a => Vector a -> a
{-# INLINE unsafeLast #-}
unsafeLast = G.unsafeLast
-- Monadic indexing
-- ----------------
-- | /O(1)/ Indexing in a monad.
--
-- The monad allows operations to be strict in the vector when necessary.
-- Suppose vector copying is implemented like this:
--
-- > copy mv v = ... write mv i (v ! i) ...
--
-- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@
-- would unnecessarily retain a reference to @v@ in each element written.
--
-- With 'indexM', copying can be implemented like this instead:
--
-- > copy mv v = ... do
-- > x <- indexM v i
-- > write mv i x
--
-- Here, no references to @v@ are retained because indexing (but /not/ the
-- element) is evaluated eagerly.
indexM :: (Unbox a, Monad m) => Vector a -> Int -> m a
{-# INLINE indexM #-}
indexM = G.indexM
-- | /O(1)/ First element of a vector in a monad. See 'indexM' for an
-- explanation of why this is useful.
headM :: (Unbox a, Monad m) => Vector a -> m a
{-# INLINE headM #-}
headM = G.headM
-- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an
-- explanation of why this is useful.
lastM :: (Unbox a, Monad m) => Vector a -> m a
{-# INLINE lastM #-}
lastM = G.lastM
-- | /O(1)/ Indexing in a monad, without bounds checks. See 'indexM' for an
-- explanation of why this is useful.
unsafeIndexM :: (Unbox a, Monad m) => Vector a -> Int -> m a
{-# INLINE unsafeIndexM #-}
unsafeIndexM = G.unsafeIndexM
-- | /O(1)/ First element in a monad, without checking for empty vectors.
-- See 'indexM' for an explanation of why this is useful.
unsafeHeadM :: (Unbox a, Monad m) => Vector a -> m a
{-# INLINE unsafeHeadM #-}
unsafeHeadM = G.unsafeHeadM
-- | /O(1)/ Last element in a monad, without checking for empty vectors.
-- See 'indexM' for an explanation of why this is useful.
unsafeLastM :: (Unbox a, Monad m) => Vector a -> m a
{-# INLINE unsafeLastM #-}
unsafeLastM = G.unsafeLastM
-- Extracting subvectors (slicing)
-- -------------------------------
-- | /O(1)/ Yield a slice of the vector without copying it. The vector must
-- contain at least @i+n@ elements.
slice :: Unbox a => Int -- ^ @i@ starting index
-> Int -- ^ @n@ length
-> Vector a
-> Vector a
{-# INLINE slice #-}
slice = G.slice
-- | /O(1)/ Yield all but the last element without copying. The vector may not
-- be empty.
init :: Unbox a => Vector a -> Vector a
{-# INLINE init #-}
init = G.init
-- | /O(1)/ Yield all but the first element without copying. The vector may not
-- be empty.
tail :: Unbox a => Vector a -> Vector a
{-# INLINE tail #-}
tail = G.tail
-- | /O(1)/ Yield at the first @n@ elements without copying. The vector may
-- contain less than @n@ elements, in which case it is returned unchanged.
take :: Unbox a => Int -> Vector a -> Vector a
{-# INLINE take #-}
take = G.take
-- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may
-- contain less than @n@ elements, in which case an empty vector is returned.
drop :: Unbox a => Int -> Vector a -> Vector a
{-# INLINE drop #-}
drop = G.drop
-- | /O(1)/ Yield the first @n@ elements paired with the remainder, without copying.
--
-- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@,
-- but slightly more efficient.
--
-- @since 0.7.1
splitAt :: Unbox a => Int -> Vector a -> (Vector a, Vector a)
{-# INLINE splitAt #-}
splitAt = G.splitAt
-- | /O(1)/ Yield the 'head' and 'tail' of the vector, or 'Nothing' if
-- the vector is empty.
--
-- @since 0.12.2.0
uncons :: Unbox a => Vector a -> Maybe (a, Vector a)
{-# INLINE uncons #-}
uncons = G.uncons
-- | /O(1)/ Yield the 'last' and 'init' of the vector, or 'Nothing' if
-- the vector is empty.
--
-- @since 0.12.2.0
unsnoc :: Unbox a => Vector a -> Maybe (Vector a, a)
{-# INLINE unsnoc #-}
unsnoc = G.unsnoc
-- | /O(1)/ Yield a slice of the vector without copying. The vector must
-- contain at least @i+n@ elements, but this is not checked.
unsafeSlice :: Unbox a => Int -- ^ @i@ starting index
-> Int -- ^ @n@ length
-> Vector a
-> Vector a
{-# INLINE unsafeSlice #-}
unsafeSlice = G.unsafeSlice
-- | /O(1)/ Yield all but the last element without copying. The vector may not
-- be empty, but this is not checked.
unsafeInit :: Unbox a => Vector a -> Vector a
{-# INLINE unsafeInit #-}
unsafeInit = G.unsafeInit
-- | /O(1)/ Yield all but the first element without copying. The vector may not
-- be empty, but this is not checked.
unsafeTail :: Unbox a => Vector a -> Vector a
{-# INLINE unsafeTail #-}
unsafeTail = G.unsafeTail
-- | /O(1)/ Yield the first @n@ elements without copying. The vector must
-- contain at least @n@ elements, but this is not checked.
unsafeTake :: Unbox a => Int -> Vector a -> Vector a
{-# INLINE unsafeTake #-}
unsafeTake = G.unsafeTake
-- | /O(1)/ Yield all but the first @n@ elements without copying. The vector
-- must contain at least @n@ elements, but this is not checked.
unsafeDrop :: Unbox a => Int -> Vector a -> Vector a
{-# INLINE unsafeDrop #-}
unsafeDrop = G.unsafeDrop
-- Initialisation
-- --------------
-- | /O(1)/ The empty vector.
empty :: Unbox a => Vector a
{-# INLINE empty #-}
empty = G.empty
-- | /O(1)/ A vector with exactly one element.
singleton :: Unbox a => a -> Vector a
{-# INLINE singleton #-}
singleton = G.singleton
-- | /O(n)/ A vector of the given length with the same value in each position.
replicate :: Unbox a => Int -> a -> Vector a
{-# INLINE replicate #-}
replicate = G.replicate
-- | /O(n)/ Construct a vector of the given length by applying the function to
-- each index.
generate :: Unbox a => Int -> (Int -> a) -> Vector a
{-# INLINE generate #-}
generate = G.generate
-- | /O(n)/ Apply the function \(\max(n - 1, 0)\) times to an initial value, producing a vector
-- of length \(\max(n, 0)\). The 0th element will contain the initial value, which is why there
-- is one less function application than the number of elements in the produced vector.
--
-- \( \underbrace{x, f (x), f (f (x)), \ldots}_{\max(0,n)\rm{~elements}} \)
--
-- ===__Examples__
--
-- >>> import qualified Data.Vector.Unboxed as VU
-- >>> VU.iterateN 0 undefined undefined :: VU.Vector Int
-- []
-- >>> VU.iterateN 3 (\(i, c) -> (pred i, succ c)) (0 :: Int, 'a')
-- [(0,'a'),(-1,'b'),(-2,'c')]
--
-- @since 0.7.1
iterateN :: Unbox a => Int -> (a -> a) -> a -> Vector a
{-# INLINE iterateN #-}
iterateN = G.iterateN
-- Unfolding
-- ---------
-- | /O(n)/ Construct a vector by repeatedly applying the generator function
-- to a seed. The generator function yields 'Just' the next element and the
-- new seed or 'Nothing' if there are no more elements.
--
-- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10
-- > = <10,9,8,7,6,5,4,3,2,1>
unfoldr :: Unbox a => (b -> Maybe (a, b)) -> b -> Vector a
{-# INLINE unfoldr #-}
unfoldr = G.unfoldr
-- | /O(n)/ Construct a vector with at most @n@ elements by repeatedly applying
-- the generator function to a seed. The generator function yields 'Just' the
-- next element and the new seed or 'Nothing' if there are no more elements.
--
-- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8>
unfoldrN :: Unbox a => Int -> (b -> Maybe (a, b)) -> b -> Vector a
{-# INLINE unfoldrN #-}
unfoldrN = G.unfoldrN
-- | /O(n)/ Construct a vector with exactly @n@ elements by repeatedly applying
-- the generator function to a seed. The generator function yields the
-- next element and the new seed.
--
-- > unfoldrExactN 3 (\n -> (n,n-1)) 10 = <10,9,8>
--
-- @since 0.12.2.0
unfoldrExactN :: Unbox a => Int -> (b -> (a, b)) -> b -> Vector a
{-# INLINE unfoldrExactN #-}
unfoldrExactN = G.unfoldrExactN
-- | /O(n)/ Construct a vector by repeatedly applying the monadic
-- generator function to a seed. The generator function yields 'Just'
-- the next element and the new seed or 'Nothing' if there are no more
-- elements.
unfoldrM :: (Monad m, Unbox a) => (b -> m (Maybe (a, b))) -> b -> m (Vector a)
{-# INLINE unfoldrM #-}
unfoldrM = G.unfoldrM
-- | /O(n)/ Construct a vector by repeatedly applying the monadic
-- generator function to a seed. The generator function yields 'Just'
-- the next element and the new seed or 'Nothing' if there are no more
-- elements.
unfoldrNM :: (Monad m, Unbox a) => Int -> (b -> m (Maybe (a, b))) -> b -> m (Vector a)
{-# INLINE unfoldrNM #-}
unfoldrNM = G.unfoldrNM
-- | /O(n)/ Construct a vector with exactly @n@ elements by repeatedly
-- applying the monadic generator function to a seed. The generator
-- function yields the next element and the new seed.
--
-- @since 0.12.2.0
unfoldrExactNM :: (Monad m, Unbox a) => Int -> (b -> m (a, b)) -> b -> m (Vector a)
{-# INLINE unfoldrExactNM #-}
unfoldrExactNM = G.unfoldrExactNM
-- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the
-- generator function to the already constructed part of the vector.
--
-- > constructN 3 f = let a = f <> ; b = f <a> ; c = f <a,b> in <a,b,c>
constructN :: Unbox a => Int -> (Vector a -> a) -> Vector a
{-# INLINE constructN #-}
constructN = G.constructN
-- | /O(n)/ Construct a vector with @n@ elements from right to left by
-- repeatedly applying the generator function to the already constructed part
-- of the vector.
--
-- > constructrN 3 f = let a = f <> ; b = f<a> ; c = f <b,a> in <c,b,a>
constructrN :: Unbox a => Int -> (Vector a -> a) -> Vector a
{-# INLINE constructrN #-}
constructrN = G.constructrN
-- Enumeration
-- -----------
-- | /O(n)/ Yield a vector of the given length, containing the values @x@, @x+1@
-- etc. This operation is usually more efficient than 'enumFromTo'.
--
-- > enumFromN 5 3 = <5,6,7>
enumFromN :: (Unbox a, Num a) => a -> Int -> Vector a
{-# INLINE enumFromN #-}
enumFromN = G.enumFromN
-- | /O(n)/ Yield a vector of the given length, containing the values @x@, @x+y@,
-- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'.
--
-- > enumFromStepN 1 2 5 = <1,3,5,7,9>
enumFromStepN :: (Unbox a, Num a) => a -> a -> Int -> Vector a
{-# INLINE enumFromStepN #-}
enumFromStepN = G.enumFromStepN
-- | /O(n)/ Enumerate values from @x@ to @y@.
--
-- /WARNING:/ This operation can be very inefficient. If possible, use
-- 'enumFromN' instead.
enumFromTo :: (Unbox a, Enum a) => a -> a -> Vector a
{-# INLINE enumFromTo #-}
enumFromTo = G.enumFromTo
-- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@.
--
-- /WARNING:/ This operation can be very inefficient. If possible, use
-- 'enumFromStepN' instead.
enumFromThenTo :: (Unbox a, Enum a) => a -> a -> a -> Vector a
{-# INLINE enumFromThenTo #-}
enumFromThenTo = G.enumFromThenTo
-- Concatenation
-- -------------
-- | /O(n)/ Prepend an element.
cons :: Unbox a => a -> Vector a -> Vector a
{-# INLINE cons #-}
cons = G.cons
-- | /O(n)/ Append an element.
snoc :: Unbox a => Vector a -> a -> Vector a
{-# INLINE snoc #-}
snoc = G.snoc
infixr 5 ++
-- | /O(m+n)/ Concatenate two vectors.
(++) :: Unbox a => Vector a -> Vector a -> Vector a
{-# INLINE (++) #-}
(++) = (G.++)
-- | /O(n)/ Concatenate all vectors in the list.
concat :: Unbox a => [Vector a] -> Vector a
{-# INLINE concat #-}
concat = G.concat
-- Monadic initialisation
-- ----------------------
-- | /O(n)/ Execute the monadic action the given number of times and store the
-- results in a vector.
replicateM :: (Monad m, Unbox a) => Int -> m a -> m (Vector a)
{-# INLINE replicateM #-}
replicateM = G.replicateM
-- | /O(n)/ Construct a vector of the given length by applying the monadic
-- action to each index.
generateM :: (Monad m, Unbox a) => Int -> (Int -> m a) -> m (Vector a)
{-# INLINE generateM #-}
generateM = G.generateM
-- | /O(n)/ Apply the monadic function \(\max(n - 1, 0)\) times to an initial value, producing a vector
-- of length \(\max(n, 0)\). The 0th element will contain the initial value, which is why there
-- is one less function application than the number of elements in the produced vector.
--
-- For a non-monadic version, see `iterateN`.
--
-- @since 0.12.0.0
iterateNM :: (Monad m, Unbox a) => Int -> (a -> m a) -> a -> m (Vector a)
{-# INLINE iterateNM #-}
iterateNM = G.iterateNM
-- | Execute the monadic action and freeze the resulting vector.
--
-- @
-- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\'; return v }) = \<'a','b'\>
-- @
create :: Unbox a => (forall s. ST s (MVector s a)) -> Vector a
{-# INLINE create #-}
-- NOTE: eta-expanded due to http://hackage.haskell.org/trac/ghc/ticket/4120
create p = G.create p
-- | Execute the monadic action and freeze the resulting vectors.
createT :: (Traversable f, Unbox a) => (forall s. ST s (f (MVector s a))) -> f (Vector a)
{-# INLINE createT #-}
createT p = G.createT p
-- Restricting memory usage
-- ------------------------
-- | /O(n)/ Yield the argument, but force it not to retain any extra memory,
-- possibly by copying it.
--
-- This is especially useful when dealing with slices. For example:
--
-- > force (slice 0 2 <huge vector>)
--
-- Here, the slice retains a reference to the huge vector. Forcing it creates
-- a copy of just the elements that belong to the slice and allows the huge
-- vector to be garbage collected.
force :: Unbox a => Vector a -> Vector a
{-# INLINE force #-}
force = G.force
-- Bulk updates
-- ------------
-- | /O(m+n)/ For each pair @(i,a)@ from the list of idnex/value pairs,
-- replace the vector element at position @i@ by @a@.
--
-- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7>
--
(//) :: Unbox a => Vector a -- ^ initial vector (of length @m@)
-> [(Int, a)] -- ^ list of index/value pairs (of length @n@)
-> Vector a
{-# INLINE (//) #-}
(//) = (G.//)
-- | /O(m+n)/ For each pair @(i,a)@ from the vector of index/value pairs,
-- replace the vector element at position @i@ by @a@.
--
-- > update <5,9,2,7> <(2,1),(0,3),(2,8)> = <3,9,8,7>
--
update :: Unbox a
=> Vector a -- ^ initial vector (of length @m@)
-> Vector (Int, a) -- ^ vector of index/value pairs (of length @n@)
-> Vector a
{-# INLINE update #-}
update = G.update
-- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
-- corresponding value @a@ from the value vector, replace the element of the
-- initial vector at position @i@ by @a@.
--
-- > update_ <5,9,2,7> <2,0,2> <1,3,8> = <3,9,8,7>
--
-- The function 'update' provides the same functionality and is usually more
-- convenient.
--
-- @
-- update_ xs is ys = 'update' xs ('zip' is ys)
-- @
update_ :: Unbox a
=> Vector a -- ^ initial vector (of length @m@)
-> Vector Int -- ^ index vector (of length @n1@)
-> Vector a -- ^ value vector (of length @n2@)
-> Vector a
{-# INLINE update_ #-}
update_ = G.update_
-- | Same as ('//'), but without bounds checking.
unsafeUpd :: Unbox a => Vector a -> [(Int, a)] -> Vector a
{-# INLINE unsafeUpd #-}
unsafeUpd = G.unsafeUpd
-- | Same as 'update', but without bounds checking.
unsafeUpdate :: Unbox a => Vector a -> Vector (Int, a) -> Vector a
{-# INLINE unsafeUpdate #-}
unsafeUpdate = G.unsafeUpdate
-- | Same as 'update_', but without bounds checking.
unsafeUpdate_ :: Unbox a => Vector a -> Vector Int -> Vector a -> Vector a
{-# INLINE unsafeUpdate_ #-}
unsafeUpdate_ = G.unsafeUpdate_
-- Accumulations
-- -------------
-- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element
-- @a@ at position @i@ by @f a b@.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Unboxed as VU
-- >>> VU.accum (+) (VU.fromList [1000,2000,3000 :: Int]) [(2,4),(1,6),(0,3),(1,10)]
-- [1003,2016,3004]
accum :: Unbox a
=> (a -> b -> a) -- ^ accumulating function @f@
-> Vector a -- ^ initial vector (of length @m@)
-> [(Int,b)] -- ^ list of index/value pairs (of length @n@)
-> Vector a
{-# INLINE accum #-}
accum = G.accum
-- | /O(m+n)/ For each pair @(i,b)@ from the vector of pairs, replace the vector
-- element @a@ at position @i@ by @f a b@.
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Unboxed as VU
-- >>> VU.accumulate (+) (VU.fromList [1000,2000,3000 :: Int]) (VU.fromList [(2,4),(1,6),(0,3),(1,10)])
-- [1003,2016,3004]
accumulate :: (Unbox a, Unbox b)
=> (a -> b -> a) -- ^ accumulating function @f@
-> Vector a -- ^ initial vector (of length @m@)
-> Vector (Int,b) -- ^ vector of index/value pairs (of length @n@)
-> Vector a
{-# INLINE accumulate #-}
accumulate = G.accumulate
-- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the
-- corresponding value @b@ from the value vector,
-- replace the element of the initial vector at
-- position @i@ by @f a b@.
--
-- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4>
--
-- The function 'accumulate' provides the same functionality and is usually more
-- convenient.
--
-- @
-- accumulate_ f as is bs = 'accumulate' f as ('zip' is bs)
-- @
accumulate_ :: (Unbox a, Unbox b)
=> (a -> b -> a) -- ^ accumulating function @f@
-> Vector a -- ^ initial vector (of length @m@)
-> Vector Int -- ^ index vector (of length @n1@)
-> Vector b -- ^ value vector (of length @n2@)
-> Vector a
{-# INLINE accumulate_ #-}
accumulate_ = G.accumulate_
-- | Same as 'accum', but without bounds checking.
unsafeAccum :: Unbox a => (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a
{-# INLINE unsafeAccum #-}
unsafeAccum = G.unsafeAccum
-- | Same as 'accumulate', but without bounds checking.
unsafeAccumulate :: (Unbox a, Unbox b)
=> (a -> b -> a) -> Vector a -> Vector (Int,b) -> Vector a
{-# INLINE unsafeAccumulate #-}
unsafeAccumulate = G.unsafeAccumulate
-- | Same as 'accumulate_', but without bounds checking.
unsafeAccumulate_ :: (Unbox a, Unbox b) =>
(a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a
{-# INLINE unsafeAccumulate_ #-}
unsafeAccumulate_ = G.unsafeAccumulate_
-- Permutations
-- ------------
-- | /O(n)/ Reverse a vector.
reverse :: Unbox a => Vector a -> Vector a
{-# INLINE reverse #-}
reverse = G.reverse
-- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the
-- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@, but is
-- often much more efficient.
--
-- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a>
backpermute :: Unbox a => Vector a -> Vector Int -> Vector a
{-# INLINE backpermute #-}
backpermute = G.backpermute
-- | Same as 'backpermute', but without bounds checking.
unsafeBackpermute :: Unbox a => Vector a -> Vector Int -> Vector a
{-# INLINE unsafeBackpermute #-}
unsafeBackpermute = G.unsafeBackpermute
-- Safe destructive updates
-- ------------------------
-- | Apply a destructive operation to a vector. The operation may be
-- performed in place if it is safe to do so and will modify a copy of the
-- vector otherwise (see 'Data.Vector.Generic.New.New' for details).
--
-- ==== __Examples__
--
-- >>> import qualified Data.Vector.Unboxed as VU
-- >>> import qualified Data.Vector.Unboxed.Mutable as MVU
-- >>> VU.modify (\v -> MVU.write v 0 'x') $ VU.replicate 4 'a'
-- "xaaa"
modify :: Unbox a => (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a
{-# INLINE modify #-}
modify p = G.modify p
-- Indexing
-- --------
-- | /O(n)/ Pair each element in a vector with its index.
indexed :: Unbox a => Vector a -> Vector (Int,a)
{-# INLINE indexed #-}
indexed = G.indexed
-- Mapping
-- -------
-- | /O(n)/ Map a function over a vector.
map :: (Unbox a, Unbox b) => (a -> b) -> Vector a -> Vector b
{-# INLINE map #-}
map = G.map
-- | /O(n)/ Apply a function to every element of a vector and its index.
imap :: (Unbox a, Unbox b) => (Int -> a -> b) -> Vector a -> Vector b
{-# INLINE imap #-}
imap = G.imap
-- | Map a function over a vector and concatenate the results.
concatMap :: (Unbox a, Unbox b) => (a -> Vector b) -> Vector a -> Vector b
{-# INLINE concatMap #-}
concatMap = G.concatMap
-- Monadic mapping
-- ---------------
-- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
-- vector of results.
mapM :: (Monad m, Unbox a, Unbox b) => (a -> m b) -> Vector a -> m (Vector b)
{-# INLINE mapM #-}
mapM = G.mapM
-- | /O(n)/ Apply the monadic action to every element of a vector and its
-- index, yielding a vector of results.
imapM :: (Monad m, Unbox a, Unbox b)
=> (Int -> a -> m b) -> Vector a -> m (Vector b)
{-# INLINE imapM #-}
imapM = G.imapM
-- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
-- results.
mapM_ :: (Monad m, Unbox a) => (a -> m b) -> Vector a -> m ()
{-# INLINE mapM_ #-}
mapM_ = G.mapM_
-- | /O(n)/ Apply the monadic action to every element of a vector and its
-- index, ignoring the results.
imapM_ :: (Monad m, Unbox a) => (Int -> a -> m b) -> Vector a -> m ()
{-# INLINE imapM_ #-}
imapM_ = G.imapM_
-- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a
-- vector of results. Equivalent to @flip 'mapM'@.
forM :: (Monad m, Unbox a, Unbox b) => Vector a -> (a -> m b) -> m (Vector b)
{-# INLINE forM #-}
forM = G.forM
-- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the
-- results. Equivalent to @flip 'mapM_'@.
forM_ :: (Monad m, Unbox a) => Vector a -> (a -> m b) -> m ()
{-# INLINE forM_ #-}
forM_ = G.forM_
-- | /O(n)/ Apply the monadic action to all elements of the vector and their indices, yielding a
-- vector of results. Equivalent to @'flip' 'imapM'@.
--
-- @since 0.12.2.0
iforM :: (Monad m, Unbox a, Unbox b) => Vector a -> (Int -> a -> m b) -> m (Vector b)
{-# INLINE iforM #-}
iforM = G.iforM
-- | /O(n)/ Apply the monadic action to all elements of the vector and their indices
-- and ignore the results. Equivalent to @'flip' 'imapM_'@.
--
-- @since 0.12.2.0
iforM_ :: (Monad m, Unbox a) => Vector a -> (Int -> a -> m b) -> m ()
{-# INLINE iforM_ #-}
iforM_ = G.iforM_
-- Zipping
-- -------
-- | /O(min(m,n))/ Zip two vectors with the given function.
zipWith :: (Unbox a, Unbox b, Unbox c)
=> (a -> b -> c) -> Vector a -> Vector b -> Vector c
{-# INLINE zipWith #-}
zipWith = G.zipWith
-- | Zip three vectors with the given function.
zipWith3 :: (Unbox a, Unbox b, Unbox c, Unbox d)
=> (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d
{-# INLINE zipWith3 #-}
zipWith3 = G.zipWith3
zipWith4 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e)
=> (a -> b -> c -> d -> e)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
{-# INLINE zipWith4 #-}
zipWith4 = G.zipWith4
zipWith5 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f)
=> (a -> b -> c -> d -> e -> f)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e
-> Vector f
{-# INLINE zipWith5 #-}
zipWith5 = G.zipWith5
zipWith6 :: (Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f, Unbox g)
=> (a -> b -> c -> d -> e -> f -> g)
-> Vector a -> Vector b -> Vector c -> Vector d -> Vector e