-
Notifications
You must be signed in to change notification settings - Fork 72
/
main.py
419 lines (351 loc) · 16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
"""
(Training, Generating edge maps)
Pixel Difference Networks for Efficient Edge Detection (accepted as an ICCV 2021 oral)
See paper in https://arxiv.org/abs/2108.07009
Author: Zhuo Su, Wenzhe Liu
Date: Aug 22, 2020
"""
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
import argparse
import os
import time
import models
from models.convert_pidinet import convert_pidinet
from utils import *
from edge_dataloader import BSDS_VOCLoader, BSDS_Loader, Multicue_Loader, NYUD_Loader, Custom_Loader
from torch.utils.data import DataLoader
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
parser = argparse.ArgumentParser(description='PyTorch Pixel Difference Convolutional Networks')
parser.add_argument('--savedir', type=str, default='results/savedir',
help='path to save result and checkpoint')
parser.add_argument('--datadir', type=str, default='../data',
help='dir to the dataset')
parser.add_argument('--only-bsds', action='store_true',
help='only use bsds for training')
parser.add_argument('--ablation', action='store_true',
help='not use bsds val set for training')
parser.add_argument('--dataset', type=str, default='BSDS',
help='data settings for BSDS, Multicue and NYUD datasets')
parser.add_argument('--model', type=str, default='baseline',
help='model to train the dataset')
parser.add_argument('--sa', action='store_true',
help='use CSAM in pidinet')
parser.add_argument('--dil', action='store_true',
help='use CDCM in pidinet')
parser.add_argument('--config', type=str, default='carv4',
help='model configurations, please refer to models/config.py for possible configurations')
parser.add_argument('--seed', type=int, default=None,
help='random seed (default: None)')
parser.add_argument('--gpu', type=str, default='',
help='gpus available')
parser.add_argument('--checkinfo', action='store_true',
help='only check the informations about the model: model size, flops')
parser.add_argument('--epochs', type=int, default=20,
help='number of total epochs to run')
parser.add_argument('--iter-size', type=int, default=24,
help='number of samples in each iteration')
parser.add_argument('--lr', type=float, default=0.005,
help='initial learning rate for all weights')
parser.add_argument('--lr-type', type=str, default='multistep',
help='learning rate strategy [cosine, multistep]')
parser.add_argument('--lr-steps', type=str, default=None,
help='steps for multistep learning rate')
parser.add_argument('--opt', type=str, default='adam',
help='optimizer')
parser.add_argument('--wd', type=float, default=1e-4,
help='weight decay for all weights')
parser.add_argument('-j', '--workers', type=int, default=4,
help='number of data loading workers')
parser.add_argument('--eta', type=float, default=0.3,
help='threshold to determine the ground truth (the eta parameter in the paper)')
parser.add_argument('--lmbda', type=float, default=1.1,
help='weight on negative pixels (the beta parameter in the paper)')
parser.add_argument('--resume', action='store_true',
help='use latest checkpoint if have any')
parser.add_argument('--print-freq', type=int, default=10,
help='print frequency')
parser.add_argument('--save-freq', type=int, default=1,
help='save frequency')
parser.add_argument('--evaluate', type=str, default=None,
help='full path to checkpoint to be evaluated')
parser.add_argument('--evaluate-converted', action='store_true',
help='convert the checkpoint to vanilla cnn, then evaluate')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
def main(running_file):
global args
### Refine args
if args.seed is None:
args.seed = int(time.time())
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
args.use_cuda = torch.cuda.is_available()
if args.lr_steps is not None and not isinstance(args.lr_steps, list):
args.lr_steps = list(map(int, args.lr_steps.split('-')))
dataset_setting_choices = ['BSDS', 'NYUD-image', 'NYUD-hha', 'Multicue-boundary-1',
'Multicue-boundary-2', 'Multicue-boundary-3', 'Multicue-edge-1', 'Multicue-edge-2', 'Multicue-edge-3', 'Custom']
if not isinstance(args.dataset, list):
assert args.dataset in dataset_setting_choices, 'unrecognized data setting %s, please choose from %s' % (str(args.dataset), str(dataset_setting_choices))
args.dataset = list(args.dataset.strip().split('-'))
print(args)
### Create model
model = getattr(models, args.model)(args)
### Output its model size, flops and bops
if args.checkinfo:
count_paramsM = get_model_parm_nums(model)
print('Model size: %f MB' % count_paramsM)
print('##########Time##########', time.strftime('%Y-%m-%d %H:%M:%S'))
return
### Define optimizer
conv_weights, bn_weights, relu_weights = model.get_weights()
param_groups = [{
'params': conv_weights,
'weight_decay': args.wd,
'lr': args.lr}, {
'params': bn_weights,
'weight_decay': 0.1 * args.wd,
'lr': args.lr}, {
'params': relu_weights,
'weight_decay': 0.0,
'lr': args.lr
}]
info = ('conv weights: lr %.6f, wd %.6f' + \
'\tbn weights: lr %.6f, wd %.6f' + \
'\trelu weights: lr %.6f, wd %.6f') % \
(args.lr, args.wd, args.lr, args.wd * 0.1, args.lr, 0.0)
print(info)
running_file.write('\n%s\n' % info)
running_file.flush()
if args.opt == 'adam':
optimizer = torch.optim.Adam(param_groups, betas=(0.9, 0.99))
elif args.opt == 'sgd':
optimizer = torch.optim.SGD(param_groups, momentum=0.9)
else:
raise TypeError("Please use a correct optimizer in [adam, sgd]")
### Transfer to cuda devices
if args.use_cuda:
model = torch.nn.DataParallel(model).cuda()
print('cuda is used, with %d gpu devices' % torch.cuda.device_count())
else:
print('cuda is not used, the running might be slow')
#cudnn.benchmark = True
### Load Data
if 'BSDS' == args.dataset[0]:
if args.only_bsds:
train_dataset = BSDS_Loader(root=args.datadir, split="train", threshold=args.eta, ablation=args.ablation)
test_dataset = BSDS_Loader(root=args.datadir, split="test", threshold=args.eta)
else:
train_dataset = BSDS_VOCLoader(root=args.datadir, split="train", threshold=args.eta, ablation=args.ablation)
test_dataset = BSDS_VOCLoader(root=args.datadir, split="test", threshold=args.eta)
elif 'Multicue' == args.dataset[0]:
train_dataset = Multicue_Loader(root=args.datadir, split="train", threshold=args.eta, setting=args.dataset[1:])
test_dataset = Multicue_Loader(root=args.datadir, split="test", threshold=args.eta, setting=args.dataset[1:])
elif 'NYUD' == args.dataset[0]:
train_dataset = NYUD_Loader(root=args.datadir, split="train", setting=args.dataset[1:])
test_dataset = NYUD_Loader(root=args.datadir, split="test", setting=args.dataset[1:])
elif 'Custom' == args.dataset[0]:
train_dataset = Custom_Loader(root=args.datadir)
test_dataset = Custom_Loader(root=args.datadir)
else:
raise ValueError("unrecognized dataset setting")
train_loader = DataLoader(
train_dataset, batch_size=1, num_workers=args.workers, shuffle=True)
test_loader = DataLoader(
test_dataset, batch_size=1, num_workers=args.workers, shuffle=False)
### Create log file
log_file = os.path.join(args.savedir, '%s_log.txt' % args.model)
args.start_epoch = 0
### Evaluate directly if required
if args.evaluate is not None:
checkpoint = load_checkpoint(args, running_file)
if checkpoint is not None:
args.start_epoch = checkpoint['epoch'] + 1
if args.evaluate_converted:
model.load_state_dict(convert_pidinet(checkpoint['state_dict'], args.config))
else:
model.load_state_dict(checkpoint['state_dict'])
else:
raise ValueError('no checkpoint loaded')
test(test_loader, model, args.start_epoch, running_file, args)
print('##########Time########## %s' % (time.strftime('%Y-%m-%d %H:%M:%S')))
return
### Optionally resume from a checkpoint
if args.resume:
checkpoint = load_checkpoint(args, running_file)
if checkpoint is not None:
args.start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
### Train
saveID = None
for epoch in range(args.start_epoch, args.epochs):
# adjust learning rate
lr_str = adjust_learning_rate(optimizer, epoch, args)
# train
tr_avg_loss = train(
train_loader, model, optimizer, epoch, running_file, args, lr_str)
log = "Epoch %03d/%03d: train-loss %s | lr %s | Time %s\n" % \
(epoch, args.epochs, tr_avg_loss, lr_str, time.strftime('%Y-%m-%d %H:%M:%S'))
with open(log_file, 'a') as f:
f.write(log)
saveID = save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, epoch, args.savedir, saveID, keep_freq=args.save_freq)
return
def train(train_loader, model, optimizer, epoch, running_file, args, running_lr):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
## Switch to train mode
model.train()
running_file.write('\n%s\n' % str(args))
running_file.flush()
wD = len(str(len(train_loader)//args.iter_size))
wE = len(str(args.epochs))
end = time.time()
iter_step = 0
counter = 0
loss_value = 0
optimizer.zero_grad()
for i, (image, label) in enumerate(train_loader):
## Measure data loading time
data_time.update(time.time() - end)
if args.use_cuda:
image = image.cuda(non_blocking=True)
label = label.cuda(non_blocking=True)
## Compute output
outputs = model(image)
if not isinstance(outputs, list):
loss = cross_entropy_loss_RCF(outputs, label, args.lmbda)
else:
loss = 0
for o in outputs:
loss += cross_entropy_loss_RCF(o, label, args.lmbda)
counter += 1
loss_value += loss.item()
loss = loss / args.iter_size
loss.backward()
if counter == args.iter_size:
optimizer.step()
optimizer.zero_grad()
counter = 0
iter_step += 1
# record loss
losses.update(loss_value, args.iter_size)
batch_time.update(time.time() - end)
end = time.time()
loss_value = 0
# display and logging
if iter_step % args.print_freq == 1:
runinfo = str(('Epoch: [{0:0%dd}/{1:0%dd}][{2:0%dd}/{3:0%dd}]\t' \
% (wE, wE, wD, wD) + \
'Time {batch_time.val:.3f}\t' + \
'Data {data_time.val:.3f}\t' + \
'Loss {loss.val:.4f} (avg:{loss.avg:.4f})\t' + \
'lr {lr}\t').format(
epoch, args.epochs, iter_step, len(train_loader)//args.iter_size,
batch_time=batch_time, data_time=data_time,
loss=losses, lr=running_lr))
print(runinfo)
running_file.write('%s\n' % runinfo)
running_file.flush()
str_loss = '%.4f' % (losses.avg)
return str_loss
def test(test_loader, model, epoch, running_file, args):
from PIL import Image
import scipy.io as sio
model.eval()
if args.ablation:
img_dir = os.path.join(args.savedir, 'eval_results_val', 'imgs_epoch_%03d' % (epoch - 1))
mat_dir = os.path.join(args.savedir, 'eval_results_val', 'mats_epoch_%03d' % (epoch - 1))
else:
img_dir = os.path.join(args.savedir, 'eval_results', 'imgs_epoch_%03d' % (epoch - 1))
mat_dir = os.path.join(args.savedir, 'eval_results', 'mats_epoch_%03d' % (epoch - 1))
eval_info = '\nBegin to eval...\nImg generated in %s\n' % img_dir
print(eval_info)
running_file.write('\n%s\n%s\n' % (str(args), eval_info))
if not os.path.exists(img_dir):
os.makedirs(img_dir)
else:
print('%s already exits' % img_dir)
#return
if not os.path.exists(mat_dir):
os.makedirs(mat_dir)
for idx, (image, img_name) in enumerate(test_loader):
img_name = img_name[0]
with torch.no_grad():
image = image.cuda() if args.use_cuda else image
_, _, H, W = image.shape
results = model(image)
result = torch.squeeze(results[-1]).cpu().numpy()
results_all = torch.zeros((len(results), 1, H, W))
for i in range(len(results)):
results_all[i, 0, :, :] = results[i]
torchvision.utils.save_image(1-results_all,
os.path.join(img_dir, "%s.jpg" % img_name))
sio.savemat(os.path.join(mat_dir, '%s.mat' % img_name), {'img': result})
result = Image.fromarray((result * 255).astype(np.uint8))
result.save(os.path.join(img_dir, "%s.png" % img_name))
runinfo = "Running test [%d/%d]" % (idx + 1, len(test_loader))
print(runinfo)
running_file.write('%s\n' % runinfo)
running_file.write('\nDone\n')
def multiscale_test(test_loader, model, epoch, running_file, args):
from PIL import Image
import scipy.io as sio
model.eval()
if args.ablation:
img_dir = os.path.join(args.savedir, 'eval_results_val', 'imgs_epoch_%03d_ms' % (epoch - 1))
mat_dir = os.path.join(args.savedir, 'eval_results_val', 'mats_epoch_%03d_ms' % (epoch - 1))
else:
img_dir = os.path.join(args.savedir, 'eval_results', 'imgs_epoch_%03d_ms' % (epoch - 1))
mat_dir = os.path.join(args.savedir, 'eval_results', 'mats_epoch_%03d_ms' % (epoch - 1))
eval_info = '\nBegin to eval...\nImg generated in %s\n' % img_dir
print(eval_info)
running_file.write('\n%s\n%s\n' % (str(args), eval_info))
if not os.path.exists(img_dir):
os.makedirs(img_dir)
else:
print('%s already exits' % img_dir)
return
if not os.path.exists(mat_dir):
os.makedirs(mat_dir)
for idx, (image, img_name) in enumerate(test_loader):
img_name = img_name[0]
image = image[0]
image_in = image.numpy().transpose((1,2,0))
scale = [0.5, 1, 1.5]
_, H, W = image.shape
multi_fuse = np.zeros((H, W), np.float32)
with torch.no_grad():
for k in range(0, len(scale)):
im_ = cv2.resize(image_in, None, fx=scale[k], fy=scale[k], interpolation=cv2.INTER_LINEAR)
im_ = im_.transpose((2,0,1))
results = model(torch.unsqueeze(torch.from_numpy(im_).cuda(), 0))
result = torch.squeeze(results[-1].detach()).cpu().numpy()
fuse = cv2.resize(result, (W, H), interpolation=cv2.INTER_LINEAR)
multi_fuse += fuse
multi_fuse = multi_fuse / len(scale)
sio.savemat(os.path.join(mat_dir, '%s.mat' % img_name), {'img': multi_fuse})
result = Image.fromarray((multi_fuse * 255).astype(np.uint8))
result.save(os.path.join(img_dir, "%s.png" % img_name))
runinfo = "Running test [%d/%d]" % (idx + 1, len(test_loader))
print(runinfo)
running_file.write('%s\n' % runinfo)
running_file.write('\nDone\n')
if __name__ == '__main__':
os.makedirs(args.savedir, exist_ok=True)
running_file = os.path.join(args.savedir, '%s_running-%s.txt' \
% (args.model, time.strftime('%Y-%m-%d-%H-%M-%S')))
with open(running_file, 'w') as f:
main(f)
print('done')