A Red-Black tree based NavigableMap implementation. The map is sorted according to the natural ordering of its keys, or by a Comparator provided at map creation time, depending on which constructor is used.
This implementation provides guaranteed **log(n) time cost **for the containsKey, get, put and remove operations. Algorithms are adaptations of those in Cormen, Leiserson, and Rivest’s Introduction to Algorithms.
之前已经学习过HashMap和LinkedHashMap了,HashMap不保证数据有序,LinkedHashMap保证数据可以保持插入顺序,而如果我们希望Map可以保持key的大小顺序的时候,我们就需要利用TreeMap了。
TreeMap<Integer, String> tmap = new TreeMap<Integer, String>();
tmap.put(1, "语文");
tmap.put(3, "英语");
tmap.put(2, "数学");
tmap.put(4, "政治");
tmap.put(5, "历史");
tmap.put(6, "地理");
tmap.put(7, "生物");
tmap.put(8, "化学");
for(Entry<Integer, String> entry : tmap.entrySet()) {
System.out.println(entry.getKey() + ": " + entry.getValue());
}
其大致的结构如下所示:
使用红黑树的好处是能够使得树具有不错的平衡性,这样操作的速度就可以达到log(n)的水平了。具体红黑树的实现不在这里赘述,可以参考数据结构之红黑树、wikipedia-红黑树等的实现。
Associates the specified value with the specified key in this map.If the map previously contained a mapping for the key, the old value is replaced.
如果存在的话,old value被替换;如果不存在的话,则新添一个节点,然后对做红黑树的平衡操作。
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
// 如果该节点存在,则替换值直接返回
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
// 如果该节点未存在,则新建
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
// 红黑树平衡调整
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
get函数则相对来说比较简单,以log(n)的复杂度进行get。
final Entry<K,V> getEntry(Object key) {
// Offload comparator-based version for sake of performance
if (comparator != null)
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
Entry<K,V> p = root;
// 按照二叉树搜索的方式进行搜索,搜到返回
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
}
public V get(Object key) {
Entry<K,V> p = getEntry(key);
return (p==null ? null : p.value);
}
TreeMap是如何保证其迭代输出是有序的呢?其实从宏观上来讲,就相当于树的中序遍历(LDR)。我们先看一下迭代输出的步骤
for(Entry<Integer, String> entry : tmap.entrySet()) {
System.out.println(entry.getKey() + ": " + entry.getValue());
}
根据The enhanced for statement,for语句会做如下转换为:
for(Iterator<Map.Entry<String, String>> it = tmap.entrySet().iterator() ; tmap.hasNext(); ) {
Entry<Integer, String> entry = it.next();
System.out.println(entry.getKey() + ": " + entry.getValue());
}
在it.next()的调用中会使用nextEntry调用successor
这个是过的后继的重点,具体实现如下:
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
if (t == null)
return null;
else if (t.right != null) {
// 有右子树的节点,后继节点就是右子树的“最左节点”
// 因为“最左子树”是右子树的最小节点
Entry<K,V> p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {
// 如果右子树为空,则寻找当前节点所在左子树的第一个祖先节点
// 因为左子树找完了,根据LDR该D了
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
// 保证左子树
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
}
怎么理解这个successor呢?只要记住,这个是中序遍历就好了,L-D-R。具体细节如下:
a. 空节点,没有后继
b. 有右子树的节点,后继就是右子树的“最左节点”
c. 无右子树的节点,后继就是该节点所在左子树的第一个祖先节点
a.好理解,不过b, c,有点像绕口令啊,没关系,上图举个例子就懂了!
有右子树的节点,节点的下一个节点,肯定在右子树中,而右子树中“最左”的那个节点则是右子树中最小的一个,那么当然是右子树的“最左节点”,就好像下图所示: