-
Notifications
You must be signed in to change notification settings - Fork 26.9k
/
test_modeling_vipllava.py
262 lines (225 loc) · 9.21 KB
/
test_modeling_vipllava.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch VipLlava model."""
import gc
import unittest
import requests
from transformers import (
AutoProcessor,
VipLlavaConfig,
VipLlavaForConditionalGeneration,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
else:
is_torch_greater_or_equal_than_2_0 = False
if is_vision_available():
from PIL import Image
# Copied from transformers.tests.models.llava.test_modeling_llava.LlavaVisionText2TextModelTester with Llava->VipLlava
class VipLlavaVisionText2TextModelTester:
# Ignore copy
def __init__(
self,
parent,
ignore_index=-100,
image_token_index=0,
projector_hidden_act="gelu",
seq_length=7,
vision_feature_layers=[0, 0, 1, 1, 0],
text_config={
"model_type": "llama",
"seq_length": 7,
"is_training": True,
"use_input_mask": True,
"use_token_type_ids": False,
"use_labels": True,
"vocab_size": 99,
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 16,
"type_sequence_label_size": 2,
"initializer_range": 0.02,
"num_labels": 3,
"num_choices": 4,
"pad_token_id": 0,
},
is_training=True,
vision_config={
"batch_size": 12,
"image_size": 30,
"patch_size": 2,
"num_channels": 3,
"is_training": True,
"hidden_size": 32,
"projection_dim": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"attention_dropout": 0.1,
"initializer_range": 0.02,
},
):
self.parent = parent
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_layers = vision_feature_layers
self.text_config = text_config
self.vision_config = vision_config
self.seq_length = seq_length
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
self.is_training = is_training
self.batch_size = 3
self.num_channels = 3
self.image_size = 336
self.encoder_seq_length = 231
def get_config(self):
return VipLlavaConfig(
text_config=self.text_config,
vision_config=self.vision_config,
ignore_index=self.ignore_index,
image_token_index=self.image_token_index,
projector_hidden_act=self.projector_hidden_act,
vision_feature_layers=self.vision_feature_layers,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
attention_mask = input_ids.ne(1).to(torch_device)
# we are giving 3 images let's make sure we pass in 3 image tokens
input_ids[:, 1] = config.image_token_index
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
# Copied from transformers.tests.models.llava.test_modeling_llava.LlavaForConditionalGenerationModelTest with Llava->VipLlava
class VipLlavaForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase):
"""
Model tester for `VipLlavaForConditionalGeneration`.
"""
all_model_classes = (VipLlavaForConditionalGeneration,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = True
test_head_masking = False
def setUp(self):
self.model_tester = VipLlavaVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=VipLlavaConfig, has_text_modality=False)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Compile not yet supported because it is not yet supported in LLava")
def test_sdpa_can_compile_dynamic(self):
pass
@unittest.skip(reason="Compile not yet supported because in LLava models")
def test_sdpa_can_dispatch_on_flash(self):
pass
@require_torch
class VipLlavaForConditionalGenerationIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("llava-hf/vip-llava-7b-hf")
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
@slow
@require_bitsandbytes
def test_small_model_integration_test(self):
model_id = "llava-hf/vip-llava-7b-hf"
model = VipLlavaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)
processor = AutoProcessor.from_pretrained(model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "USER: <image>\nCan you please describe this image?\nASSISTANT:"
inputs = processor(prompt, image, return_tensors="pt").to(torch_device, torch.float16)
outputs = model.generate(**inputs, max_new_tokens=10)
EXPECTED_OUTPUT = "USER: <image> \nCan you please describe this image?\nASSISTANT: The image features a brown and white cat sitting on"
self.assertEqual(processor.decode(outputs[0], skip_special_tokens=True), EXPECTED_OUTPUT)
@slow
@require_torch_gpu
def test_vipllava_merge_inputs_error_bug(self):
# This is a reproducer of https://github.com/huggingface/transformers/pull/28333 and makes sure it does not happen anymore
model_id = "llava-hf/vip-llava-7b-hf"
model = VipLlavaForConditionalGeneration.from_pretrained(
model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True
).to(torch_device)
# Simulate some user inputs
pixel_values = torch.randn(
(2, 3, 336, 336),
dtype=torch.float,
device=torch_device,
)
input_ids = torch.tensor(
[
[32001, 32001, 1, 15043, 7084, 32000, 29871, 13, 7900],
[1, 15043, 7084, 29901, 29871, 32000, 29871, 13, 7900],
],
dtype=torch.long,
device=torch_device,
)
attention_mask = torch.tensor(
[[0, 0, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1]],
dtype=torch.long,
device=torch_device,
)
# Make sure that the loss is properly computed
loss = model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
labels=input_ids,
).loss
loss.backward()