forked from yjxiong/action-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ssn_dataset.py
508 lines (392 loc) · 19.8 KB
/
ssn_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import torch.utils.data as data
import os
import os.path
from numpy.random import randint
from ops.io import load_proposal_file
from transforms import *
from ops.utils import temporal_iou
class SSNInstance:
def __init__(self, start_frame, end_frame, video_frame_count,
fps=1, label=None,
best_iou=None, overlap_self=None):
self.start_frame = start_frame
self.end_frame = min(end_frame, video_frame_count)
self._label = label
self.fps = fps
self.coverage = (end_frame - start_frame) / video_frame_count
self.best_iou = best_iou
self.overlap_self = overlap_self
self.loc_reg = None
self.size_reg = None
def compute_regression_targets(self, gt_list, fg_thresh):
if self.best_iou < fg_thresh:
# background proposals do not need this
return
# find the groundtruth instance with the highest IOU
ious = [temporal_iou((self.start_frame, self.end_frame), (gt.start_frame, gt.end_frame)) for gt in gt_list]
best_gt_id = np.argmax(ious)
best_gt = gt_list[best_gt_id]
prop_center = (self.start_frame + self.end_frame) / 2
gt_center = (best_gt.start_frame + best_gt.end_frame) / 2
prop_size = self.end_frame - self.start_frame + 1
gt_size = best_gt.end_frame - best_gt.start_frame + 1
# get regression target:
# (1). center shift propotional to the proposal duration
# (2). logarithm of the groundtruth duration over proposal duraiton
self.loc_reg = (gt_center - prop_center) / prop_size
try:
self.size_reg = math.log(gt_size / prop_size)
except:
print(gt_size, prop_size, self.start_frame, self.end_frame)
raise
@property
def start_time(self):
return self.start_frame / self.fps
@property
def end_time(self):
return self.end_frame / self.fps
@property
def label(self):
return self._label if self._label is not None else -1
@property
def regression_targets(self):
return [self.loc_reg, self.size_reg] if self.loc_reg is not None else [0, 0]
class SSNVideoRecord:
def __init__(self, prop_record):
self._data = prop_record
frame_count = int(self._data[1])
# build instance record
self.gt = [
SSNInstance(int(x[1]), int(x[2]), frame_count, label=int(x[0]), best_iou=1.0) for x in self._data[2]
if int(x[2]) > int(x[1])
]
self.gt = list(filter(lambda x: x.start_frame < frame_count, self.gt))
self.proposals = [
SSNInstance(int(x[3]), int(x[4]), frame_count, label=int(x[0]),
best_iou=float(x[1]), overlap_self=float(x[2])) for x in self._data[3] if int(x[4]) > int(x[3])
]
self.proposals = list(filter(lambda x: x.start_frame < frame_count, self.proposals))
@property
def id(self):
return self._data[0]
@property
def num_frames(self):
return int(self._data[1])
def get_fg(self, fg_thresh, with_gt=True):
fg = [p for p in self.proposals if p.best_iou > fg_thresh]
if with_gt:
fg.extend(self.gt)
for x in fg:
x.compute_regression_targets(self.gt, fg_thresh)
return fg
def get_negatives(self, incomplete_iou_thresh, bg_iou_thresh,
bg_coverage_thresh=0.01, incomplete_overlap_thresh=0.7):
tag = [0] * len(self.proposals)
incomplete_props = []
background_props = []
for i in range(len(tag)):
if self.proposals[i].best_iou < incomplete_iou_thresh \
and self.proposals[i].overlap_self > incomplete_overlap_thresh:
tag[i] = 1 # incomplete
incomplete_props.append(self.proposals[i])
for i in range(len(tag)):
if tag[i] == 0 and \
self.proposals[i].best_iou < bg_iou_thresh and \
self.proposals[i].coverage > bg_coverage_thresh:
background_props.append(self.proposals[i])
return incomplete_props, background_props
class SSNDataSet(data.Dataset):
def __init__(self, root_path,
prop_file=None,
body_seg=5, aug_seg=2, video_centric=True,
new_length=1, modality='RGB',
image_tmpl='img_{:05d}.jpg', transform=None,
random_shift=True, test_mode=False,
prop_per_video=8, fg_ratio=1, bg_ratio=1, incomplete_ratio=6,
fg_iou_thresh=0.7,
bg_iou_thresh=0.01, incomplete_iou_thresh=0.3,
bg_coverage_thresh=0.02, incomplete_overlap_thresh=0.7,
gt_as_fg=True, reg_stats=None, test_interval=6, verbose=True,
exclude_empty=True, epoch_multiplier=1):
self.root_path = root_path
self.prop_file = prop_file
self.verbose = verbose
self.body_seg = body_seg
self.aug_seg = aug_seg
self.video_centric = video_centric
self.exclude_empty = exclude_empty
self.epoch_multiplier = epoch_multiplier
self.new_length = new_length
self.modality = modality
self.image_tmpl = image_tmpl
self.transform = transform
self.random_shift = random_shift
self.test_mode = test_mode
self.test_interval = test_interval
self.fg_iou_thresh = fg_iou_thresh
self.incomplete_iou_thresh = incomplete_iou_thresh
self.bg_iou_thresh = bg_iou_thresh
self.bg_coverage_thresh = bg_coverage_thresh
self.incomplete_overlap_thresh = incomplete_overlap_thresh
self.starting_ratio = 0.5
self.ending_ratio = 0.5
self.gt_as_fg = gt_as_fg
denum = fg_ratio + bg_ratio + incomplete_ratio
self.fg_per_video = int(prop_per_video * (fg_ratio / denum))
self.bg_per_video = int(prop_per_video * (bg_ratio / denum))
self.incomplete_per_video = prop_per_video - self.fg_per_video - self.bg_per_video
self._parse_prop_file(stats=reg_stats)
def _load_image(self, directory, idx):
if self.modality == 'RGB' or self.modality == 'RGBDiff':
return [Image.open(os.path.join(directory, self.image_tmpl.format(idx))).convert('RGB')]
elif self.modality == 'Flow':
x_img = Image.open(os.path.join(directory, self.image_tmpl.format('x', idx))).convert('L')
y_img = Image.open(os.path.join(directory, self.image_tmpl.format('y', idx))).convert('L')
return [x_img, y_img]
def _parse_prop_file(self, stats=None):
prop_info = load_proposal_file(self.prop_file)
self.video_list = [SSNVideoRecord(p) for p in prop_info]
if self.exclude_empty:
self.video_list = list(filter(lambda x: len(x.gt) > 0, self.video_list))
self.video_dict = {v.id: v for v in self.video_list}
# construct three pools:
# 1. Foreground
# 2. Background
# 3. Incomplete
self.fg_pool = []
self.bg_pool = []
self.incomp_pool = []
for v in self.video_list:
self.fg_pool.extend([(v.id, prop) for prop in v.get_fg(self.fg_iou_thresh, self.gt_as_fg)])
incomp, bg = v.get_negatives(self.incomplete_iou_thresh, self.bg_iou_thresh,
self.bg_coverage_thresh, self.incomplete_overlap_thresh)
self.incomp_pool.extend([(v.id, prop) for prop in incomp])
self.bg_pool.extend([(v.id, prop) for prop in bg])
if stats is None:
self._compute_regresssion_stats()
else:
self.stats = stats
if self.verbose:
print("""
SSNDataset: Proposal file {prop_file} parsed.
There are {pnum} usable proposals from {vnum} videos.
{fnum} foreground proposals
{inum} incomplete_proposals
{bnum} background_proposals
Sampling config:
FG/BG/INC: {fr}/{br}/{ir}
Video Centric: {vc}
Epoch size multiplier: {em}
Regression Stats:
Location: mean {stats[0][0]:.05f} std {stats[1][0]:.05f}
Duration: mean {stats[0][1]:.05f} std {stats[1][1]:.05f}
""".format(prop_file=self.prop_file, pnum=len(self.fg_pool) + len(self.bg_pool) + len(self.incomp_pool),
fnum=len(self.fg_pool), inum=len(self.incomp_pool), bnum=len(self.bg_pool),
fr=self.fg_per_video, br=self.bg_per_video, ir=self.incomplete_per_video, vnum=len(self.video_dict),
vc=self.video_centric, stats=self.stats, em=self.epoch_multiplier))
else:
print("""
SSNDataset: Proposal file {prop_file} parsed.
""".format(prop_file=self.prop_file))
def _video_centric_sampling(self, video):
fg = video.get_fg(self.fg_iou_thresh, self.gt_as_fg)
incomp, bg = video.get_negatives(self.incomplete_iou_thresh, self.bg_iou_thresh,
self.bg_coverage_thresh, self.incomplete_overlap_thresh)
def sample_video_proposals(proposal_type, video_id, video_pool, requested_num, dataset_pool):
if len(video_pool) == 0:
# if there is nothing in the video pool, go fetch from the dataset pool
return [(dataset_pool[x], proposal_type) for x in np.random.choice(len(dataset_pool), requested_num, replace=False)]
else:
replicate = len(video_pool) < requested_num
idx = np.random.choice(len(video_pool), requested_num, replace=replicate)
return [((video_id, video_pool[x]), proposal_type) for x in idx]
out_props = []
out_props.extend(sample_video_proposals(0, video.id, fg, self.fg_per_video, self.fg_pool)) # sample foreground
out_props.extend(sample_video_proposals(1, video.id, incomp, self.incomplete_per_video, self.incomp_pool)) # sample incomp.
out_props.extend(sample_video_proposals(2, video.id, bg, self.bg_per_video, self.bg_pool)) # sample background
return out_props
def _random_sampling(self):
out_props = []
out_props.extend([(x, 0) for x in np.random.choice(self.fg_pool, self.fg_per_video, replace=False)])
out_props.extend([(x, 1) for x in np.random.choice(self.incomp_pool, self.incomplete_per_video, replace=False)])
out_props.extend([(x, 2) for x in np.random.choice(self.bg_pool, self.bg_per_video, replace=False)])
return out_props
def _sample_indices(self, valid_length, num_seg):
"""
:param record: VideoRecord
:return: list
"""
average_duration = (valid_length + 1) // num_seg
if average_duration > 0:
# normal cases
offsets = np.multiply(list(range(num_seg)), average_duration) \
+ randint(average_duration, size=num_seg)
elif valid_length > num_seg:
offsets = np.sort(randint(valid_length, size=num_seg))
else:
offsets = np.zeros((num_seg, ))
return offsets
def _get_val_indices(self, valid_length, num_seg):
if valid_length > num_seg:
tick = valid_length / float(num_seg)
offsets = np.array([int(tick / 2.0 + tick * x) for x in range(num_seg)])
else:
offsets = np.zeros((num_seg,))
return offsets
def _sample_ssn_indices(self, prop, frame_cnt):
start_frame = prop.start_frame + 1
end_frame = prop.end_frame
duration = end_frame - start_frame + 1
assert duration != 0, (prop.start_frame, prop.end_frame, prop.best_iou)
valid_length = duration - self.new_length
valid_starting = max(1, start_frame - int(duration * self.starting_ratio))
valid_ending = min(frame_cnt - self.new_length + 1, end_frame + int(duration * self.ending_ratio))
valid_starting_length = (start_frame - valid_starting - self.new_length + 1)
valid_ending_length = (valid_ending - end_frame - self.new_length + 1)
starting_scale = (valid_starting_length + self.new_length - 1) / (duration * self.starting_ratio)
ending_scale = (valid_ending_length + self.new_length - 1) / (duration * self.ending_ratio)
# get starting
starting_offsets = (self._sample_indices(valid_starting_length, self.aug_seg) if self.random_shift
else self._get_val_indices(valid_starting_length, self.aug_seg)) + valid_starting
course_offsets = (self._sample_indices(valid_length, self.body_seg) if self.random_shift
else self._get_val_indices(valid_length, self.body_seg)) + start_frame
ending_offsets = (self._sample_indices(valid_ending_length, self.aug_seg) if self.random_shift
else self._get_val_indices(valid_ending_length, self.aug_seg)) + end_frame
offsets = np.concatenate((starting_offsets, course_offsets, ending_offsets))
stage_split = [self.aug_seg, self.aug_seg + self.body_seg, self.aug_seg * 2 + self.body_seg]
return offsets, starting_scale, ending_scale, stage_split
def _load_prop_data(self, prop):
# read frame count
frame_cnt = self.video_dict[prop[0][0]].num_frames
# sample segment indices
prop_indices, starting_scale, ending_scale, stage_split = self._sample_ssn_indices(prop[0][1], frame_cnt)
# turn prop into standard format
# get label
if prop[1] == 0:
label = prop[0][1].label
elif prop[1] == 1:
label = prop[0][1].label # incomplete
elif prop[1] == 2:
label = 0 # background
else:
raise ValueError()
frames = []
for idx, seg_ind in enumerate(prop_indices):
p = int(seg_ind)
for x in range(self.new_length):
frames.extend(self._load_image(prop[0][0], min(frame_cnt, p+x)))
# get regression target
if prop[1] == 0:
reg_targets = prop[0][1].regression_targets
reg_targets = (reg_targets[0] - self.stats[0][0]) / self.stats[1][0], \
(reg_targets[1] - self.stats[0][1]) / self.stats[1][1]
else:
reg_targets = (0.0, 0.0)
return frames, label, reg_targets, starting_scale, ending_scale, stage_split, prop[1]
def _compute_regresssion_stats(self):
if self.verbose:
print("computing regression target normalizing constants")
targets = []
for video in self.video_list:
fg = video.get_fg(self.fg_iou_thresh, False)
for p in fg:
targets.append(list(p.regression_targets))
self.stats = np.array((np.mean(targets, axis=0), np.std(targets, axis=0)))
def get_test_data(self, video, test_interval, gen_batchsize=4):
props = video.proposals
video_id = video.id
frame_cnt = video.num_frames
frame_ticks = np.arange(0, frame_cnt - self.new_length, test_interval, dtype=np.int) + 1
num_sampled_frames = len(frame_ticks)
# avoid empty proposal list
if len(props) == 0:
props.append(SSNInstance(0, frame_cnt - 1, frame_cnt))
# process proposals to subsampled sequences
rel_prop_list = []
proposal_tick_list = []
scaling_list = []
for proposal in props:
rel_prop = proposal.start_frame / frame_cnt, proposal.end_frame / frame_cnt
rel_duration = rel_prop[1] - rel_prop[0]
rel_starting_duration = rel_duration * self.starting_ratio
rel_ending_duration = rel_duration * self.ending_ratio
rel_starting = rel_prop[0] - rel_starting_duration
rel_ending = rel_prop[1] + rel_ending_duration
real_rel_starting = max(0.0, rel_starting)
real_rel_ending = min(1.0, rel_ending)
starting_scaling = (rel_prop[0] - real_rel_starting) / rel_starting_duration
ending_scaling = (real_rel_ending - rel_prop[1]) / rel_ending_duration
proposal_ticks = int(real_rel_starting * num_sampled_frames), int(rel_prop[0] * num_sampled_frames), \
int(rel_prop[1] * num_sampled_frames), int(real_rel_ending * num_sampled_frames)
rel_prop_list.append(rel_prop)
proposal_tick_list.append(proposal_ticks)
scaling_list.append((starting_scaling, ending_scaling))
# load frames
# Since there are many frames for each video during testing, instead of returning the read frames,
# we return a generator which gives the frames in small batches, this lower the memory burden
# and runtime overhead. Usually setting batchsize=4 would fit most cases.
def frame_gen(batchsize):
frames = []
cnt = 0
for idx, seg_ind in enumerate(frame_ticks):
p = int(seg_ind)
for x in range(self.new_length):
frames.extend(self._load_image(video_id, min(frame_cnt, p+x)))
cnt += 1
if cnt % batchsize == 0:
frames = self.transform(frames)
yield frames
frames = []
if len(frames):
frames = self.transform(frames)
yield frames
return frame_gen(gen_batchsize), len(frame_ticks), torch.from_numpy(np.array(rel_prop_list)), \
torch.from_numpy(np.array(proposal_tick_list)), torch.from_numpy(np.array(scaling_list))
def get_training_data(self, index):
if self.video_centric:
video = self.video_list[index]
props = self._video_centric_sampling(video)
else:
props = self._random_sampling()
out_frames = []
out_prop_len = []
out_prop_scaling = []
out_prop_type = []
out_prop_labels = []
out_prop_reg_targets = []
out_stage_split = []
for idx, p in enumerate(props):
prop_frames, prop_label, reg_targets, starting_scale, ending_scale, stage_split, prop_type = self._load_prop_data(
p)
processed_frames = self.transform(prop_frames)
out_frames.append(processed_frames)
out_prop_len.append(self.body_seg + 2 * self.aug_seg)
out_prop_scaling.append([starting_scale, ending_scale])
out_prop_labels.append(prop_label)
out_prop_reg_targets.append(reg_targets)
out_prop_type.append(prop_type)
out_stage_split.append(stage_split)
out_prop_len = torch.from_numpy(np.array(out_prop_len))
out_prop_scaling = torch.from_numpy(np.array(out_prop_scaling, dtype=np.float32))
out_prop_labels = torch.from_numpy(np.array(out_prop_labels))
out_prop_reg_targets = torch.from_numpy(np.array(out_prop_reg_targets, dtype=np.float32))
out_prop_type = torch.from_numpy(np.array(out_prop_type))
out_stage_split = torch.from_numpy(np.array(out_stage_split))
out_frames = torch.cat(out_frames)
return out_frames, out_prop_len, out_prop_scaling, out_prop_type, out_prop_labels, \
out_prop_reg_targets, out_stage_split
def get_all_gt(self):
gt_list = []
for video in self.video_list:
vid = video.id
gt_list.extend([[vid, x.label - 1, x.start_frame / video.num_frames,
x.end_frame / video.num_frames] for x in video.gt])
return gt_list
def __getitem__(self, index):
real_index = index % len(self.video_list)
if self.test_mode:
return self.get_test_data(self.video_list[real_index], self.test_interval)
else:
return self.get_training_data(real_index)
def __len__(self):
return len(self.video_list) * self.epoch_multiplier