-
Notifications
You must be signed in to change notification settings - Fork 0
/
ml_main.py
91 lines (80 loc) · 3.26 KB
/
ml_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import dhg
import hydra
import logging
import numpy as np
from copy import deepcopy
from collections import defaultdict
from omegaconf import DictConfig, OmegaConf
from models import (
HypergraphRootedKernel,
GraphSubtreeKernel,
GraphletSampling,
HypergraphDirectedLineKernel,
HypergraphSubtreeKernel,
HypergraphHyedgeKernel,
)
from utils import load_data, separate_data, train_infer_SVM
print = logging.info
multi_label, criterion = None, None
@hydra.main(config_path=".", config_name="ml_config")
def main(cfg: DictConfig):
if cfg.model.name in [
"hypergraph_rooted",
"hypergraph_directed_line",
"hypergraph_subtree",
"hypergraph_hyedge",
]:
model_type = "hypergraph"
else:
model_type = "graph"
print(OmegaConf.to_yaml(cfg))
global multi_label, criterion
dhg.random.set_seed(cfg.seed)
x_list, y_list, meta = load_data(
cfg.data.name, cfg.data.root, cfg.data.degree_as_tag, model_type
)
multi_label = meta["multi_label"]
n_classes = meta["n_classes"]
n_fold_idx = separate_data(x_list, y_list, cfg.data.n_fold, cfg.seed)
if cfg.model.name == "graph_subtree":
model = GraphSubtreeKernel(normalize=cfg.model.normalize)
elif cfg.model.name == "graphlet_sampling":
model = GraphletSampling(normalize=cfg.model.normalize, sampling={})
elif cfg.model.name == "hypergraph_rooted":
model = HypergraphRootedKernel(normalize=cfg.model.normalize)
elif cfg.model.name == "hypergraph_directed_line":
model = HypergraphDirectedLineKernel(normalize=cfg.model.normalize)
elif cfg.model.name == "hypergraph_subtree":
model = HypergraphSubtreeKernel(normalize=cfg.model.normalize)
elif cfg.model.name == "hypergraph_hyedge":
model = HypergraphHyedgeKernel(normalize=cfg.model.normalize)
else:
raise NotImplementedError
test_res, test_all_res = [], defaultdict(list)
for fold_idx, (train_idx, test_idx) in enumerate(n_fold_idx):
_x_list, _y_list = deepcopy(x_list), deepcopy(y_list)
train_x_list, train_y_list, test_x_list, test_y_list = [], [], [], []
for idx in train_idx:
train_x_list.append(_x_list[idx])
train_y_list.append(_y_list[idx])
for idx in test_idx:
test_x_list.append(_x_list[idx])
test_y_list.append(_y_list[idx])
train_y, test_y = np.array(train_y_list), np.array(test_y_list)
K_train = model.fit_transform(train_x_list).cpu().numpy()
K_test = model.transform(test_x_list).cpu().numpy()
# --------------------------------------------------------------
test_val, best_res = train_infer_SVM(
K_train, train_y, K_test, test_y, multi_label
)
# --------------------------------------------------------------
print(f"[{fold_idx+1}/{len(n_fold_idx)}] test results: {test_val:.4f}")
test_res.append(test_val)
for k, v in best_res.items():
test_all_res[k].append(v)
res = {k: sum(v) / len(v) for k, v in test_all_res.items()}
print(f"mean test results: {' | '.join([f'{k}:{v:.5f}' for k, v in res.items()])}")
print("--------------------------------------------------")
return test_res
if __name__ == "__main__":
main()