-
Notifications
You must be signed in to change notification settings - Fork 60
/
train.py
144 lines (112 loc) · 4.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import copy
import os
import random
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torch.backends.cudnn as cudnn
import math
import numpy as np
from config import get_train_config
from data import ModelNet40
from models import MeshNet
from utils.retrival import append_feature, calculate_map
cfg = get_train_config()
os.environ['CUDA_VISIBLE_DEVICES'] = cfg['cuda_devices']
# seed
seed = cfg['seed']
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# dataset
data_set = {
x: ModelNet40(cfg=cfg['dataset'], part=x) for x in ['train', 'test']
}
data_loader = {
x: data.DataLoader(data_set[x], batch_size=cfg['batch_size'], num_workers=4, shuffle=True, pin_memory=False)
for x in ['train', 'test']
}
def train_model(model, criterion, optimizer, scheduler, cfg):
best_acc = 0.0
best_map = 0.0
best_model_wts = copy.deepcopy(model.state_dict())
for epoch in range(1, cfg['max_epoch']):
print('-' * 60)
print('Epoch: {} / {}'.format(epoch, cfg['max_epoch']))
print('-' * 60)
# adjust_learning_rate(cfg, epoch, optimizer)
for phrase in ['train', 'test']:
if phrase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
ft_all, lbl_all = None, None
for i, (centers, corners, normals, neighbor_index, targets) in enumerate(data_loader[phrase]):
centers = centers.cuda()
corners = corners.cuda()
normals = normals.cuda()
neighbor_index = neighbor_index.cuda()
targets = targets.cuda()
with torch.set_grad_enabled(phrase == 'train'):
outputs, feas = model(centers, corners, normals, neighbor_index)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, targets)
if phrase == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
if phrase == 'test' and cfg['retrieval_on']:
ft_all = append_feature(ft_all, feas.detach().cpu())
lbl_all = append_feature(lbl_all, targets.detach().cpu(), flaten=True)
running_loss += loss.item() * centers.size(0)
running_corrects += torch.sum(preds == targets.data)
epoch_loss = running_loss / len(data_set[phrase])
epoch_acc = running_corrects.double() / len(data_set[phrase])
if phrase == 'train':
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phrase, epoch_loss, epoch_acc))
scheduler.step()
if phrase == 'test':
if epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print_info = '{} Loss: {:.4f} Acc: {:.4f} (best {:.4f})'.format(phrase, epoch_loss, epoch_acc, best_acc)
if cfg['retrieval_on']:
epoch_map = calculate_map(ft_all, lbl_all)
if epoch_map > best_map:
best_map = epoch_map
print_info += ' mAP: {:.4f}'.format(epoch_map)
if epoch % cfg['save_steps'] == 0:
torch.save(copy.deepcopy(model.state_dict()), os.path.join(cfg['ckpt_root'], '{}.pkl'.format(epoch)))
print(print_info)
print('Best val acc: {:.4f}'.format(best_acc))
print('Config: {}'.format(cfg))
return best_model_wts
if __name__ == '__main__':
# prepare model
model = MeshNet(cfg=cfg['MeshNet'], require_fea=True)
model.cuda()
model = nn.DataParallel(model)
# criterion
criterion = nn.CrossEntropyLoss()
# optimizer
if cfg['optimizer'] == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=cfg['lr'], momentum=cfg['momentum'], weight_decay=cfg['weight_decay'])
else:
optimizer = optim.AdamW(model.parameters(), lr=cfg['lr'], weight_decay=cfg['weight_decay'])
# scheduler
if cfg['scheduler'] == 'step':
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg['milestones'])
else:
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg['max_epoch'])
# start training
if not os.path.exists(cfg['ckpt_root']):
os.mkdir(cfg['ckpt_root'])
best_model_wts = train_model(model, criterion, optimizer, scheduler, cfg)
torch.save(best_model_wts, os.path.join(cfg['ckpt_root'], 'MeshNet_best.pkl'))