-
Notifications
You must be signed in to change notification settings - Fork 258
/
shvvmx.c
616 lines (538 loc) · 18.5 KB
/
shvvmx.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
/*++
Copyright (c) Alex Ionescu. All rights reserved.
Module Name:
shvvmx.c
Abstract:
This module implements Intel VMX (Vanderpool/VT-x)-specific routines.
Author:
Alex Ionescu (@aionescu) 16-Mar-2016 - Initial version
Environment:
Kernel mode only, IRQL DISPATCH_LEVEL.
--*/
#include "shv.h"
VOID
ShvVmxMtrrInitialize (
_In_ PSHV_VP_DATA VpData
)
{
UINT32 i;
MTRR_CAPABILITIES mtrrCapabilities;
MTRR_VARIABLE_BASE mtrrBase;
MTRR_VARIABLE_MASK mtrrMask;
unsigned long bit;
//
// Read the capabilities mask
//
mtrrCapabilities.AsUlonglong = __readmsr(MTRR_MSR_CAPABILITIES);
//
// Iterate over each variable MTRR
//
for (i = 0; i < mtrrCapabilities.VarCnt; i++)
{
//
// Capture the value
//
mtrrBase.AsUlonglong = __readmsr(MTRR_MSR_VARIABLE_BASE + i * 2);
mtrrMask.AsUlonglong = __readmsr(MTRR_MSR_VARIABLE_MASK + i * 2);
//
// Check if the MTRR is enabled
//
VpData->MtrrData[i].Type = (UINT32)mtrrBase.Type;
VpData->MtrrData[i].Enabled = (UINT32)mtrrMask.Enabled;
if (VpData->MtrrData[i].Enabled != FALSE)
{
//
// Set the base
//
VpData->MtrrData[i].PhysicalAddressMin = mtrrBase.PhysBase *
MTRR_PAGE_SIZE;
//
// Compute the length
//
_BitScanForward64(&bit, mtrrMask.PhysMask * MTRR_PAGE_SIZE);
VpData->MtrrData[i].PhysicalAddressMax = VpData->MtrrData[i].
PhysicalAddressMin +
(1ULL << bit) - 1;
}
}
}
UINT32
ShvVmxMtrrAdjustEffectiveMemoryType (
_In_ PSHV_VP_DATA VpData,
_In_ UINT64 LargePageAddress,
_In_ UINT32 CandidateMemoryType
)
{
UINT32 i;
//
// Loop each MTRR range
//
for (i = 0; i < sizeof(VpData->MtrrData) / sizeof(VpData->MtrrData[0]); i++)
{
//
// Check if it's active
//
if (VpData->MtrrData[i].Enabled != FALSE)
{
//
// Check if this large page falls within the boundary. If a single
// physical page (4KB) touches it, we need to override the entire 2MB.
//
if (((LargePageAddress + (_2MB - 1)) >= VpData->MtrrData[i].PhysicalAddressMin) &&
(LargePageAddress <= VpData->MtrrData[i].PhysicalAddressMax))
{
//
// Override candidate type with MTRR type
//
CandidateMemoryType = VpData->MtrrData[i].Type;
}
}
}
//
// Return the correct type needed
//
return CandidateMemoryType;
}
VOID
ShvVmxEptInitialize (
_In_ PSHV_VP_DATA VpData
)
{
UINT32 i, j;
VMX_PDPTE tempEpdpte;
VMX_LARGE_PDE tempEpde;
//
// Fill out the EPML4E which covers the first 512GB of RAM
//
VpData->Epml4[0].Read = 1;
VpData->Epml4[0].Write = 1;
VpData->Epml4[0].Execute = 1;
VpData->Epml4[0].PageFrameNumber = ShvOsGetPhysicalAddress(&VpData->Epdpt) / PAGE_SIZE;
//
// Fill out a RWX PDPTE
//
tempEpdpte.AsUlonglong = 0;
tempEpdpte.Read = tempEpdpte.Write = tempEpdpte.Execute = 1;
//
// Construct EPT identity map for every 1GB of RAM
//
__stosq((UINT64*)VpData->Epdpt, tempEpdpte.AsUlonglong, PDPTE_ENTRY_COUNT);
for (i = 0; i < PDPTE_ENTRY_COUNT; i++)
{
//
// Set the page frame number of the PDE table
//
VpData->Epdpt[i].PageFrameNumber = ShvOsGetPhysicalAddress(&VpData->Epde[i][0]) / PAGE_SIZE;
}
//
// Fill out a RWX Large PDE
//
tempEpde.AsUlonglong = 0;
tempEpde.Read = tempEpde.Write = tempEpde.Execute = 1;
tempEpde.Large = 1;
//
// Loop every 1GB of RAM (described by the PDPTE)
//
__stosq((UINT64*)VpData->Epde, tempEpde.AsUlonglong, PDPTE_ENTRY_COUNT * PDE_ENTRY_COUNT);
for (i = 0; i < PDPTE_ENTRY_COUNT; i++)
{
//
// Construct EPT identity map for every 2MB of RAM
//
for (j = 0; j < PDE_ENTRY_COUNT; j++)
{
VpData->Epde[i][j].PageFrameNumber = (i * 512) + j;
VpData->Epde[i][j].Type = ShvVmxMtrrAdjustEffectiveMemoryType(VpData,
VpData->Epde[i][j].PageFrameNumber * _2MB,
MTRR_TYPE_WB);
}
}
}
UINT8
ShvVmxEnterRootModeOnVp (
_In_ PSHV_VP_DATA VpData
)
{
PSHV_SPECIAL_REGISTERS Registers = &VpData->SpecialRegisters;
//
// Ensure the the VMCS can fit into a single page
//
if (((VpData->MsrData[0].QuadPart & VMX_BASIC_VMCS_SIZE_MASK) >> 32) > PAGE_SIZE)
{
return FALSE;
}
//
// Ensure that the VMCS is supported in writeback memory
//
if (((VpData->MsrData[0].QuadPart & VMX_BASIC_MEMORY_TYPE_MASK) >> 50) != MTRR_TYPE_WB)
{
return FALSE;
}
//
// Ensure that true MSRs can be used for capabilities
//
if (((VpData->MsrData[0].QuadPart) & VMX_BASIC_DEFAULT1_ZERO) == 0)
{
return FALSE;
}
//
// Ensure that EPT is available with the needed features SimpleVisor uses
//
if (((VpData->MsrData[12].QuadPart & VMX_EPT_PAGE_WALK_4_BIT) != 0) &&
((VpData->MsrData[12].QuadPart & VMX_EPTP_WB_BIT) != 0) &&
((VpData->MsrData[12].QuadPart & VMX_EPT_2MB_PAGE_BIT) != 0))
{
//
// Enable EPT if these features are supported
//
VpData->EptControls = SECONDARY_EXEC_ENABLE_EPT | SECONDARY_EXEC_ENABLE_VPID;
}
//
// Capture the revision ID for the VMXON and VMCS region
//
VpData->VmxOn.RevisionId = VpData->MsrData[0].LowPart;
VpData->Vmcs.RevisionId = VpData->MsrData[0].LowPart;
//
// Store the physical addresses of all per-LP structures allocated
//
VpData->VmxOnPhysicalAddress = ShvOsGetPhysicalAddress(&VpData->VmxOn);
VpData->VmcsPhysicalAddress = ShvOsGetPhysicalAddress(&VpData->Vmcs);
VpData->MsrBitmapPhysicalAddress = ShvOsGetPhysicalAddress(VpData->MsrBitmap);
VpData->EptPml4PhysicalAddress = ShvOsGetPhysicalAddress(&VpData->Epml4);
//
// Update CR0 with the must-be-zero and must-be-one requirements
//
Registers->Cr0 &= VpData->MsrData[7].LowPart;
Registers->Cr0 |= VpData->MsrData[6].LowPart;
//
// Do the same for CR4
//
Registers->Cr4 &= VpData->MsrData[9].LowPart;
Registers->Cr4 |= VpData->MsrData[8].LowPart;
//
// Update host CR0 and CR4 based on the requirements above
//
__writecr0(Registers->Cr0);
__writecr4(Registers->Cr4);
//
// Enable VMX Root Mode
//
if (__vmx_on(&VpData->VmxOnPhysicalAddress))
{
return FALSE;
}
//
// Clear the state of the VMCS, setting it to Inactive
//
if (__vmx_vmclear(&VpData->VmcsPhysicalAddress))
{
__vmx_off();
return FALSE;
}
//
// Load the VMCS, setting its state to Active
//
if (__vmx_vmptrld(&VpData->VmcsPhysicalAddress))
{
__vmx_off();
return FALSE;
}
//
// VMX Root Mode is enabled, with an active VMCS.
//
return TRUE;
}
VOID
ShvVmxSetupVmcsForVp (
_In_ PSHV_VP_DATA VpData
)
{
PSHV_SPECIAL_REGISTERS state = &VpData->SpecialRegisters;
PCONTEXT context = &VpData->ContextFrame;
VMX_GDTENTRY64 vmxGdtEntry;
VMX_EPTP vmxEptp;
//
// Begin by setting the link pointer to the required value for 4KB VMCS.
//
__vmx_vmwrite(VMCS_LINK_POINTER, ~0ULL);
//
// Enable EPT features if supported
//
if (VpData->EptControls != 0)
{
//
// Configure the EPTP
//
vmxEptp.AsUlonglong = 0;
vmxEptp.PageWalkLength = 3;
vmxEptp.Type = MTRR_TYPE_WB;
vmxEptp.PageFrameNumber = VpData->EptPml4PhysicalAddress / PAGE_SIZE;
//
// Load EPT Root Pointer
//
__vmx_vmwrite(EPT_POINTER, vmxEptp.AsUlonglong);
//
// Set VPID to one
//
__vmx_vmwrite(VIRTUAL_PROCESSOR_ID, 1);
}
//
// Load the MSR bitmap. Unlike other bitmaps, not having an MSR bitmap will
// trap all MSRs, so we allocated an empty one.
//
__vmx_vmwrite(MSR_BITMAP, VpData->MsrBitmapPhysicalAddress);
//
// Enable support for RDTSCP and XSAVES/XRESTORES in the guest. Windows 10
// makes use of both of these instructions if the CPU supports it. By using
// ShvUtilAdjustMsr, these options will be ignored if this processor does
// not actually support the instructions to begin with.
//
// Also enable EPT support, for additional performance and ability to trap
// memory access efficiently.
//
__vmx_vmwrite(SECONDARY_VM_EXEC_CONTROL,
ShvUtilAdjustMsr(VpData->MsrData[11],
SECONDARY_EXEC_ENABLE_RDTSCP |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_XSAVES |
VpData->EptControls));
//
// Enable no pin-based options ourselves, but there may be some required by
// the processor. Use ShvUtilAdjustMsr to add those in.
//
__vmx_vmwrite(PIN_BASED_VM_EXEC_CONTROL,
ShvUtilAdjustMsr(VpData->MsrData[13], 0));
//
// In order for our choice of supporting RDTSCP and XSAVE/RESTORES above to
// actually mean something, we have to request secondary controls. We also
// want to activate the MSR bitmap in order to keep them from being caught.
//
__vmx_vmwrite(CPU_BASED_VM_EXEC_CONTROL,
ShvUtilAdjustMsr(VpData->MsrData[14],
CPU_BASED_ACTIVATE_MSR_BITMAP |
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS));
//
// Make sure to enter us in x64 mode at all times.
//
__vmx_vmwrite(VM_EXIT_CONTROLS,
ShvUtilAdjustMsr(VpData->MsrData[15],
VM_EXIT_IA32E_MODE));
//
// As we exit back into the guest, make sure to exist in x64 mode as well.
//
__vmx_vmwrite(VM_ENTRY_CONTROLS,
ShvUtilAdjustMsr(VpData->MsrData[16],
VM_ENTRY_IA32E_MODE));
//
// Load the CS Segment (Ring 0 Code)
//
ShvUtilConvertGdtEntry(state->Gdtr.Base, context->SegCs, &vmxGdtEntry);
__vmx_vmwrite(GUEST_CS_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(GUEST_CS_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(GUEST_CS_AR_BYTES, vmxGdtEntry.AccessRights);
__vmx_vmwrite(GUEST_CS_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(HOST_CS_SELECTOR, context->SegCs & ~RPL_MASK);
//
// Load the SS Segment (Ring 0 Data)
//
ShvUtilConvertGdtEntry(state->Gdtr.Base, context->SegSs, &vmxGdtEntry);
__vmx_vmwrite(GUEST_SS_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(GUEST_SS_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(GUEST_SS_AR_BYTES, vmxGdtEntry.AccessRights);
__vmx_vmwrite(GUEST_SS_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(HOST_SS_SELECTOR, context->SegSs & ~RPL_MASK);
//
// Load the DS Segment (Ring 3 Data)
//
ShvUtilConvertGdtEntry(state->Gdtr.Base, context->SegDs, &vmxGdtEntry);
__vmx_vmwrite(GUEST_DS_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(GUEST_DS_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(GUEST_DS_AR_BYTES, vmxGdtEntry.AccessRights);
__vmx_vmwrite(GUEST_DS_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(HOST_DS_SELECTOR, context->SegDs & ~RPL_MASK);
//
// Load the ES Segment (Ring 3 Data)
//
ShvUtilConvertGdtEntry(state->Gdtr.Base, context->SegEs, &vmxGdtEntry);
__vmx_vmwrite(GUEST_ES_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(GUEST_ES_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(GUEST_ES_AR_BYTES, vmxGdtEntry.AccessRights);
__vmx_vmwrite(GUEST_ES_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(HOST_ES_SELECTOR, context->SegEs & ~RPL_MASK);
//
// Load the FS Segment (Ring 3 Compatibility-Mode TEB)
//
ShvUtilConvertGdtEntry(state->Gdtr.Base, context->SegFs, &vmxGdtEntry);
__vmx_vmwrite(GUEST_FS_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(GUEST_FS_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(GUEST_FS_AR_BYTES, vmxGdtEntry.AccessRights);
__vmx_vmwrite(GUEST_FS_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(HOST_FS_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(HOST_FS_SELECTOR, context->SegFs & ~RPL_MASK);
//
// Load the GS Segment (Ring 3 Data if in Compatibility-Mode, MSR-based in Long Mode)
//
ShvUtilConvertGdtEntry(state->Gdtr.Base, context->SegGs, &vmxGdtEntry);
__vmx_vmwrite(GUEST_GS_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(GUEST_GS_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(GUEST_GS_AR_BYTES, vmxGdtEntry.AccessRights);
__vmx_vmwrite(GUEST_GS_BASE, state->MsrGsBase);
__vmx_vmwrite(HOST_GS_BASE, state->MsrGsBase);
__vmx_vmwrite(HOST_GS_SELECTOR, context->SegGs & ~RPL_MASK);
//
// Load the Task Register (Ring 0 TSS)
//
ShvUtilConvertGdtEntry(state->Gdtr.Base, state->Tr, &vmxGdtEntry);
__vmx_vmwrite(GUEST_TR_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(GUEST_TR_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(GUEST_TR_AR_BYTES, vmxGdtEntry.AccessRights);
__vmx_vmwrite(GUEST_TR_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(HOST_TR_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(HOST_TR_SELECTOR, state->Tr & ~RPL_MASK);
//
// Load the Local Descriptor Table (Ring 0 LDT on Redstone)
//
ShvUtilConvertGdtEntry(state->Gdtr.Base, state->Ldtr, &vmxGdtEntry);
__vmx_vmwrite(GUEST_LDTR_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(GUEST_LDTR_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(GUEST_LDTR_AR_BYTES, vmxGdtEntry.AccessRights);
__vmx_vmwrite(GUEST_LDTR_BASE, vmxGdtEntry.Base);
//
// Now load the GDT itself
//
__vmx_vmwrite(GUEST_GDTR_BASE, (uintptr_t)state->Gdtr.Base);
__vmx_vmwrite(GUEST_GDTR_LIMIT, state->Gdtr.Limit);
__vmx_vmwrite(HOST_GDTR_BASE, (uintptr_t)state->Gdtr.Base);
//
// And then the IDT
//
__vmx_vmwrite(GUEST_IDTR_BASE, (uintptr_t)state->Idtr.Base);
__vmx_vmwrite(GUEST_IDTR_LIMIT, state->Idtr.Limit);
__vmx_vmwrite(HOST_IDTR_BASE, (uintptr_t)state->Idtr.Base);
//
// Load CR0
//
__vmx_vmwrite(CR0_READ_SHADOW, state->Cr0);
__vmx_vmwrite(HOST_CR0, state->Cr0);
__vmx_vmwrite(GUEST_CR0, state->Cr0);
//
// Load CR3 -- do not use the current process' address space for the host,
// because we may be executing in an arbitrary user-mode process right now
// as part of the DPC interrupt we execute in.
//
__vmx_vmwrite(HOST_CR3, VpData->SystemDirectoryTableBase);
__vmx_vmwrite(GUEST_CR3, state->Cr3);
//
// Load CR4
//
__vmx_vmwrite(HOST_CR4, state->Cr4);
__vmx_vmwrite(GUEST_CR4, state->Cr4);
__vmx_vmwrite(CR4_READ_SHADOW, state->Cr4);
//
// Load debug MSR and register (DR7)
//
__vmx_vmwrite(GUEST_IA32_DEBUGCTL, state->DebugControl);
__vmx_vmwrite(GUEST_DR7, state->KernelDr7);
//
// Finally, load the guest stack, instruction pointer, and rflags, which
// corresponds exactly to the location where RtlCaptureContext will return
// to inside of ShvVpInitialize.
//
__vmx_vmwrite(GUEST_RSP, (uintptr_t)VpData->ShvStackLimit + KERNEL_STACK_SIZE - sizeof(CONTEXT));
__vmx_vmwrite(GUEST_RIP, (uintptr_t)ShvVpRestoreAfterLaunch);
__vmx_vmwrite(GUEST_RFLAGS, context->EFlags);
//
// Load the hypervisor entrypoint and stack. We give ourselves a standard
// size kernel stack (24KB) and bias for the context structure that the
// hypervisor entrypoint will push on the stack, avoiding the need for RSP
// modifying instructions in the entrypoint. Note that the CONTEXT pointer
// and thus the stack itself, must be 16-byte aligned for ABI compatibility
// with AMD64 -- specifically, XMM operations will fail otherwise, such as
// the ones that RtlCaptureContext will perform.
//
C_ASSERT((KERNEL_STACK_SIZE - sizeof(CONTEXT)) % 16 == 0);
__vmx_vmwrite(HOST_RSP, (uintptr_t)VpData->ShvStackLimit + KERNEL_STACK_SIZE - sizeof(CONTEXT));
__vmx_vmwrite(HOST_RIP, (uintptr_t)ShvVmxEntry);
}
UINT8
ShvVmxProbe (
VOID
)
{
INT32 cpu_info[4];
UINT64 featureControl;
//
// Check the Hypervisor Present-bit
//
__cpuid(cpu_info, 1);
if ((cpu_info[2] & 0x20) == FALSE)
{
return FALSE;
}
//
// Check if the Feature Control MSR is locked. If it isn't, this means that
// BIOS/UEFI firmware screwed up, and we could go around locking it, but
// we'd rather not mess with it.
//
featureControl = __readmsr(IA32_FEATURE_CONTROL_MSR);
if (!(featureControl & IA32_FEATURE_CONTROL_MSR_LOCK))
{
return FALSE;
}
//
// The Feature Control MSR is locked-in (valid). Is VMX enabled in normal
// operation mode?
//
if (!(featureControl & IA32_FEATURE_CONTROL_MSR_ENABLE_VMXON_OUTSIDE_SMX))
{
return FALSE;
}
//
// Both the hardware and the firmware are allowing us to enter VMX mode.
//
return TRUE;
}
INT32
ShvVmxLaunchOnVp (
_In_ PSHV_VP_DATA VpData
)
{
UINT32 i;
//
// Initialize all the VMX-related MSRs by reading their value
//
for (i = 0; i < sizeof(VpData->MsrData) / sizeof(VpData->MsrData[0]); i++)
{
VpData->MsrData[i].QuadPart = __readmsr(MSR_IA32_VMX_BASIC + i);
}
//
// Initialize all the MTRR-related MSRs by reading their value and build
// range structures to describe their settings
//
ShvVmxMtrrInitialize(VpData);
//
// Initialize the EPT structures
//
ShvVmxEptInitialize(VpData);
//
// Attempt to enter VMX root mode on this processor.
//
if (ShvVmxEnterRootModeOnVp(VpData) == FALSE)
{
//
// We could not enter VMX Root mode
//
return SHV_STATUS_NOT_AVAILABLE;
}
//
// Initialize the VMCS, both guest and host state.
//
ShvVmxSetupVmcsForVp(VpData);
//
// Launch the VMCS, based on the guest data that was loaded into the
// various VMCS fields by ShvVmxSetupVmcsForVp. This will cause the
// processor to jump to ShvVpRestoreAfterLaunch on success, or return
// back to the caller on failure.
//
return ShvVmxLaunch();
}