forked from HopkinsIDD/COVIDScenarioPipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yml
168 lines (160 loc) · 4.02 KB
/
config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
name: mid-west-coast-AZ-NV
start_date: 2020-01-31
end_date: 2020-10-01
nsimulations: 1000
dt: 0.25
dynfilter_path: data/west-coast-AZ-NV/filtergithub.txt
report_location_name: California
spatial_setup:
base_path: data/west-coast-AZ-NV
setup_name: west-coast-AZ-NV
geodata: geodata.csv
shapefile_name: shp/counties_2010_west-coast-AZ-NV.shp
shapefile: shp/counties_2010_west-coast-AZ-NV.shp # Two is redundant. We should fix this
mobility: mobility.txt
popnodes: pop2010
nodenames: geoid # Name of the column in geodata with uniquely name of nodes
include_in_report: targeted
importation:
census_api_key: "DO NOT PUT THE KEY IN THE PUBLIC REPO"
travel_dispersion: 3
maximum_destinations: Inf
dest_type : state
dest_country : USA
aggregate_to: airport
cache_work: TRUE
update_case_data: TRUE
draw_travel_from_distribution: FALSE
print_progress: FALSE
travelers_threshold: 10000
airport_cluster_distance: 80
param_list:
incub_mean_log: log(5.89)
incub_sd_log: log(1.74)
inf_period_nohosp_mean: 15
inf_period_nohosp_sd: 5
inf_period_hosp_shape: 0.75
inf_period_hosp_scale: 5.367
p_report_source: [0.05, 0.25]
shift_incid_days: -10
delta: 1
#seeding:
# method: FolderDraw
# folder_path: model_output/importation/
seeding:
method: PoissonDistributed
lambda_file: data/west-coast-AZ-NV/seeding.csv
interventions:
scenarios:
- Wuhan
- None
- Influenza1918
- SchoolClosure
- TestIsolate
- CaliforniaMild
- CaliforniaMid
- CaliforniaSevere
settings:
None:
template: ReduceR0
period_start_date: 2020-01-31
period_end_date: 2020-03-13
value:
distribution: fixed
value: 0
Wuhan:
template: ReduceR0
period_start_date: 2020-03-19
period_end_date: 2020-05-14
value:
distribution: uniform
low: .81
high: .89
Influenza1918:
template: ReduceR0
period_start_date: 2020-05-15
period_end_date: 2020-10-01
value:
distribution: uniform
low: .44
high: .65
SchoolClosure:
template: ReduceR0
period_start_date: 2020-03-13
period_end_date: 2020-03-19
value:
distribution: truncnorm
a: 0.16
b: 0.30
mean: 0.18
sd: 0.05
TestIsolate:
template: ReduceR0
period_start_date: 2020-05-15
period_end_date: 2020-10-01
value:
distribution: uniform
low: .48
high: .76
CaliforniaMild:
template: Stacked
scenarios:
- SchoolClosure
- Wuhan
CaliforniaSevere:
template: Stacked
scenarios:
- SchoolClosure
- Wuhan
- TestIsolate
CaliforniaMid:
template: Stacked
scenarios:
- SchoolClosure
- Wuhan
- Influenza1918
seir:
parameters:
sigma: 1 / 5.2
gamma:
distribution: uniform
low: 1 / 6
high: 1 / 2.6
R0s:
distribution: uniform
low: 2
high: 3
hospitalization:
paths:
output_path: hospitalization
parameters:
time_hosp: [1.23, 0.79]
time_disch: [log(11.5), log(1.22)]
time_death: [log(11.25), log(1.15)]
time_ICU: [log(8.25), log(2.2)]
time_ICUdur: [log(16), log(2.96)]
time_vent: [log(10.5), log((10.5-8)/1.35)]
p_death: [.0025, .005, .01]
p_death_names: ["low","med","high"]
p_death_rate: 0.1
p_ICU: 0.32
p_vent: 0.15
report:
data_settings:
pop_year: 2010
plot_settings:
plot_intervention: TRUE
formatting:
scenario_labels_short: ["WH","UC","1918","SC","TI","M1","M2","M3"]
scenario_labels:
- Wuhan/Lockdown
- Worst Case Uncontrolled
- Influenza 1918
- School Closure
- Test and Isolate
- Mild Proposed Scenario
- Moderate Proposed Scenario
- Severe Proposed Scenario
scenario_colors: ["#D95F02", "#1B9E77", "#7570B3", "#7570B3", "#7570B3", "#7570B3", "#7570B3", "#7570B3"]
pdeath_labels: ["0.25% IFR", "0.5% IFR", "1% IFR"]
display_dates: ["2020-5-1", "2020-7-1", "2020-9-1"]