-
Notifications
You must be signed in to change notification settings - Fork 11
/
densenet_features.py
342 lines (275 loc) · 13.3 KB
/
densenet_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from collections import OrderedDict
model_urls = {
'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
}
model_dir = './pretrained_models'
class _DenseLayer(nn.Sequential):
num_layers = 2
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(_DenseLayer, self).__init__()
self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
self.add_module('relu1', nn.ReLU(inplace=True)),
self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
growth_rate, kernel_size=1, stride=1, bias=False)),
self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
self.add_module('relu2', nn.ReLU(inplace=True)),
self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
kernel_size=3, stride=1, padding=1, bias=False)),
self.drop_rate = drop_rate
def forward(self, x):
new_features = super(_DenseLayer, self).forward(x)
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
# channelwise concatenation
return torch.cat([x, new_features], 1)
def layer_conv_info(self):
layer_kernel_sizes = [1, 3]
layer_strides = [1, 1]
layer_paddings = [0, 1]
return layer_kernel_sizes, layer_strides, layer_paddings
class _DenseBlock(nn.Sequential):
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
super(_DenseBlock, self).__init__()
self.block_kernel_sizes = []
self.block_strides = []
self.block_paddings = []
for i in range(num_layers):
layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
layer_kernel_sizes, layer_strides, layer_paddings = layer.layer_conv_info()
self.block_kernel_sizes.extend(layer_kernel_sizes)
self.block_strides.extend(layer_strides)
self.block_paddings.extend(layer_paddings)
self.add_module('denselayer%d' % (i + 1), layer)
self.num_layers = _DenseLayer.num_layers * num_layers
def block_conv_info(self):
return self.block_kernel_sizes, self.block_strides, self.block_paddings
class _Transition(nn.Sequential):
num_layers = 1
def __init__(self, num_input_features, num_output_features):
super(_Transition, self).__init__()
self.add_module('norm', nn.BatchNorm2d(num_input_features))
self.add_module('relu', nn.ReLU(inplace=True))
self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
kernel_size=1, stride=1, bias=False))
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) # AvgPool2d has no padding
def block_conv_info(self):
return [1, 2], [1, 2], [0, 0]
class DenseNet_features(nn.Module):
r"""Densenet-BC model class, based on
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
growth_rate (int) - how many filters to add each layer (`k` in paper)
block_config (list of 4 ints) - how many layers in each pooling block
num_init_features (int) - the number of filters to learn in the first convolution layer
bn_size (int) - multiplicative factor for number of bottle neck layers
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer
num_classes (int) - number of classification classes
"""
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000):
super(DenseNet_features, self).__init__()
self.kernel_sizes = []
self.strides = []
self.paddings = []
self.n_layers = 0
# First convolution
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(in_channels=3, out_channels=num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
('norm0', nn.BatchNorm2d(num_init_features)),
('relu0', nn.ReLU(inplace=True)),
('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
]))
self.kernel_sizes.extend([7, 3])
self.strides.extend([2, 2])
self.paddings.extend([3, 1])
# Each denseblock
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate)
self.n_layers += block.num_layers
block_kernel_sizes, block_strides, block_paddings = block.block_conv_info()
self.kernel_sizes.extend(block_kernel_sizes)
self.strides.extend(block_strides)
self.paddings.extend(block_paddings)
self.features.add_module('denseblock%d' % (i + 1), block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
self.n_layers += trans.num_layers
block_kernel_sizes, block_strides, block_paddings = trans.block_conv_info()
self.kernel_sizes.extend(block_kernel_sizes)
self.strides.extend(block_strides)
self.paddings.extend(block_paddings)
self.features.add_module('transition%d' % (i + 1), trans)
num_features = num_features // 2
# Final batch norm
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
self.features.add_module('final_relu', nn.ReLU(inplace=True))
# Official init from torch repo.
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
def forward(self, x):
return self.features(x)
def conv_info(self):
return self.kernel_sizes, self.strides, self.paddings
def num_layers(self):
return self.n_layers
def __repr__(self):
template = 'densenet{}_features'
return template.format((self.num_layers() + 2))
def densenet121_features(pretrained=False, **kwargs):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = DenseNet_features(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
**kwargs)
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(model_urls['densenet121'], model_dir=model_dir)
for key in list(state_dict.keys()):
'''
example
key 'features.denseblock4.denselayer24.norm.2.running_var'
res.group(1) 'features.denseblock4.denselayer24.norm'
res.group(2) '2.running_var'
new_key 'features.denseblock4.denselayer24.norm2.running_var'
'''
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
del state_dict['classifier.weight']
del state_dict['classifier.bias']
model.load_state_dict(state_dict)
return model
def densenet169_features(pretrained=False, **kwargs):
r"""Densenet-169 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = DenseNet_features(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32),
**kwargs)
if pretrained:
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(model_urls['densenet169'], model_dir=model_dir)
for key in list(state_dict.keys()):
'''
example
key 'features.denseblock4.denselayer24.norm.2.running_var'
res.group(1) 'features.denseblock4.denselayer24.norm'
res.group(2) '2.running_var'
new_key 'features.denseblock4.denselayer24.norm2.running_var'
'''
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
del state_dict['classifier.weight']
del state_dict['classifier.bias']
model.load_state_dict(state_dict)
return model
def densenet201_features(pretrained=False, **kwargs):
r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = DenseNet_features(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32),
**kwargs)
if pretrained:
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(model_urls['densenet201'], model_dir=model_dir)
for key in list(state_dict.keys()):
'''
example
key 'features.denseblock4.denselayer24.norm.2.running_var'
res.group(1) 'features.denseblock4.denselayer24.norm'
res.group(2) '2.running_var'
new_key 'features.denseblock4.denselayer24.norm2.running_var'
'''
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
del state_dict['classifier.weight']
del state_dict['classifier.bias']
model.load_state_dict(state_dict)
return model
def densenet161_features(pretrained=False, **kwargs):
r"""Densenet-161 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = DenseNet_features(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24),
**kwargs)
if pretrained:
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(model_urls['densenet161'], model_dir=model_dir)
for key in list(state_dict.keys()):
'''
example
key 'features.denseblock4.denselayer24.norm.2.running_var'
res.group(1) 'features.denseblock4.denselayer24.norm'
res.group(2) '2.running_var'
new_key 'features.denseblock4.denselayer24.norm2.running_var'
'''
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
del state_dict['classifier.weight']
del state_dict['classifier.bias']
model.load_state_dict(state_dict)
return model
if __name__ == '__main__':
d161 = densenet161_features(True)
print(d161)
d201 = densenet201_features(True)
print(d201)
d169 = densenet169_features(True)
print(d169)
d121 = densenet121_features(True)
print(d121)