-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
220 lines (172 loc) · 7.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import datetime
import torch
from sklearn.metrics import precision_recall_fscore_support as prfs
from utils.parser import get_parser_with_args
from utils.helpers import (get_loaders, get_criterion,
initialize_metrics, get_mean_metrics, load_model_DARNet,
set_metrics)
import os
import logging
import json
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import random
import numpy as np
import warnings
now=datetime.datetime.now().strftime('%m-%d_%H-%M_')
print(now)
warnings.filterwarnings("ignore")
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
resume_model = '' # Assign pretrained models or not
"""
Initialize Parser and define arguments
"""
parser, metadata = get_parser_with_args()
opt = parser.parse_args()
"""
Initialize experiments log
"""
logging.basicConfig(level=logging.INFO)
writer = SummaryWriter(opt.log_dir + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/')
"""
Set up environment: define paths, download data, and set device
"""
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
dev = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
logging.info('GPU AVAILABLE? ' + str(torch.cuda.is_available()))
def seed_torch(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
seed_torch(seed=28)
train_loader, val_loader = get_loaders(opt)
"""
Load Model then define other aspects of the model
"""
logging.info('LOADING Model')
model = load_model_DARNet(opt, dev)
oss_weight = [0.2,0.2,0.2,0.2,0.2]
model_name = 'DARNet'+str(loss_weight)
print(model_name)
print(loss_weight)
if resume_model:
model = torch.load(resume_model)
model = model.module
print(f'Resume model:{resume_model}')
model_name = 'resume'
if True:
model = torch.nn.DataParallel(model,device_ids=[0,1])
criterion = get_criterion(opt)
optimizer = torch.optim.AdamW(model.parameters(), lr=opt.learning_rate) # Be careful when you adjust learning rate, you can refer to the linear scaling rule
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5) #step_size=8 # step6 gamma 0.5 #0.0002 50 0.5
'''
Set starting values
'''
best_metrics = {'cd_f1scores': -1, 'cd_recalls': -1, 'cd_precisions': -1}
logging.info('STARTING training')
total_step = -1
for epoch in range(opt.epochs):
train_metrics = initialize_metrics()
val_metrics = initialize_metrics()
'''
Training
'''
model.train()
logging.info('Training')
batch_iter = 0
tbar = tqdm(train_loader,ncols=80)
for batch_img1, batch_img2, labels in tbar:
tbar.set_description("epoch {} info ".format(epoch) + str(batch_iter) + " - " + str(batch_iter+opt.batch_size))
batch_iter = batch_iter+opt.batch_size
total_step += 1
batch_img1 = batch_img1.float().to(dev)
batch_img2 = batch_img2.float().to(dev)
labels = labels.long().to(dev)
optimizer.zero_grad()
cd_preds = model(batch_img1, batch_img2)
cd_loss = criterion(cd_preds, labels,loss_weight)
loss = cd_loss
loss.backward()
optimizer.step()
cd_preds = cd_preds[-1]
_, cd_preds = torch.max(cd_preds, 1)
cd_corrects = (100 *
(cd_preds.squeeze().byte() == labels.squeeze().byte()).sum() /
float(labels.size()[0] * (opt.patch_size**2)))
cd_train_report = prfs(labels.data.cpu().numpy().flatten(),
cd_preds.data.cpu().numpy().flatten(),
average='binary',
pos_label=1)
train_metrics = set_metrics(train_metrics,
cd_loss,
cd_corrects,
cd_train_report,
scheduler.get_lr())
mean_train_metrics = get_mean_metrics(train_metrics)
for k, v in mean_train_metrics.items():
writer.add_scalars(str(k), {'train': v}, total_step)
del batch_img1, batch_img2, labels
scheduler.step()
logging.info("EPOCH {} TRAIN METRICS".format(epoch) + str(mean_train_metrics))
'''
Validation
'''
model.eval()
with torch.no_grad():
for batch_img1, batch_img2, labels in val_loader:
# Set variables for training
batch_img1 = batch_img1.float().to(dev)
batch_img2 = batch_img2.float().to(dev)
labels = labels.long().to(dev)
# Get predictions and calculate loss
cd_preds = model(batch_img1, batch_img2)
cd_loss = criterion(cd_preds, labels, loss_weight)
cd_preds = cd_preds[-1]
_, cd_preds = torch.max(cd_preds, 1)
# Calculate and log other batch metrics
cd_corrects = (100 *
(cd_preds.squeeze().byte() == labels.squeeze().byte()).sum() /
float(labels.size()[0] * (opt.patch_size**2)))
cd_val_report = prfs(labels.data.cpu().numpy().flatten(),
cd_preds.data.cpu().numpy().flatten(),
average='binary',
pos_label=1)
val_metrics = set_metrics(val_metrics,
cd_loss,
cd_corrects,
cd_val_report,
scheduler.get_lr())
# log the batch mean metrics
mean_val_metrics = get_mean_metrics(val_metrics)
for k, v in mean_train_metrics.items():
writer.add_scalars(str(k), {'val': v}, total_step)
# clear batch variables from memory
del batch_img1, batch_img2, labels
logging.info("EPOCH {} VALIDATION METRICS".format(epoch)+str(mean_val_metrics))
"""
Store the weights of good epochs based on validation results
"""
if ((mean_val_metrics['cd_precisions'] > best_metrics['cd_precisions'])
or
(mean_val_metrics['cd_recalls'] > best_metrics['cd_recalls'])
or
(mean_val_metrics['cd_f1scores'] > best_metrics['cd_f1scores'])):
# Insert training and epoch information to metadata dictionary
logging.info('updata the model')
metadata['validation_metrics'] = mean_val_metrics
# Save model and log
if not os.path.exists('./tmp'+'/'+now+model_name):
os.makedirs('./tmp'+'/'+now+model_name)
with open('./tmp'+'/'+now+model_name+'/metadata_epoch_' + str(epoch) + '.json', 'w') as fout:
json.dump(metadata, fout)
torch.save(model, './tmp'+'/'+now+model_name+'/metadata_epoch_'+str(epoch)+'.pt')
# comet.log_asset(upload_metadata_file_path)
best_metrics = mean_val_metrics
print('An epoch finished.')
writer.close() # close tensor board
print('Training Finished!')