-
Notifications
You must be signed in to change notification settings - Fork 59
/
cycle_brent.html
164 lines (134 loc) · 3.96 KB
/
cycle_brent.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
<html>
<head>
<title>
CYCLE_BRENT - Cycle Detection by Brent's Method
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
CYCLE_BRENT <br> Cycle Detection by Brent's Method
</h1>
<hr>
<p>
<b>CYCLE_BRENT</b>
is a FORTRAN90 library which
analyzes a cycle in an iterated function sequence using Brent's method.
</p>
<p>
Suppose we a repeatedly apply a function f(), starting with the argument
x0, then f(x0), f(f(x0)) and so on. Suppose that the range of f is finite.
Then eventually the iteration must reach a cycle. Once the cycle is reached,
succeeding values stay within that cycle.
</p>
<p>
Starting at x0, there is a "nearest element" of the cycle, which is
reached after MU applications of f.
</p>
<p>
Once the cycle is entered, the cycle has a length LAM, which is the number
of steps required to first return to a given value.
</p>
<p>
This function uses Brent's method to determine the values of MU and LAM,
given F and X0.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>CYCLE_BRENT</b> is available in
<a href = "../../c_src/cycle_brent/cycle_brent.html">a C version</a> and
<a href = "../../cpp_src/cycle_brent/cycle_brent.html">a C++ version</a> and
<a href = "../../f77_src/cycle_brent/cycle_brent.html">a FORTRAN77 version</a> and
<a href = "../../f_src/cycle_brent/cycle_brent.html">a FORTRAN90 version</a> and
<a href = "../../m_src/cycle_brent/cycle_brent.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/cycle_floyd/cycle_floyd.html">
CYCLE_FLOYD</a>,
a FORTRAN90 library which
carries out an iterated function evaluation, and seeks to determine the
nearest element of a cycle, and the cycle's length, using Floyd's method.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Richard Brent,<br>
An improved Monte Carlo factorization algorithm,<br>
BIT,<br>
Volume 20, Number 2, 1980, pages 176-184.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "cycle_brent.f90">cycle_brent.f90</a>, the source code.
</li>
<li>
<a href = "cycle_brent.sh">cycle_brent.sh</a>,
BASH commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "cycle_brent_prb.f90">cycle_brent_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "cycle_brent_prb.sh">cycle_brent_prb.sh</a>,
BASH commands to compile and run the sample program.
</li>
<li>
<a href = "cycle_brent_prb_output.txt">cycle_brent_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>CYCLE_BRENT</b> finds a cycle in an iterated mapping using Brent's method.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 14 June 2012.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>