-
Notifications
You must be signed in to change notification settings - Fork 59
/
faure.html
332 lines (287 loc) · 8.59 KB
/
faure.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
<html>
<head>
<title>
FAURE - The Faure Quasirandom Sequence
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
FAURE <br> The Faure Quasirandom Sequence
</h1>
<hr>
<p>
<b>FAURE</b>
is a FORTRAN90 library which
computes elements of the Faure quasirandom sequence.
</p>
<p>
A quasirandom or low discrepancy sequence, such as the Faure,
Halton, Hammersley, Niederreiter or Sobol sequences, is
"less random" than a pseudorandom number sequence, but
more useful for such tasks as approximation of integrals in
higher dimensions, and in global optimization.
This is because low discrepancy sequences tend to sample
space "more uniformly" than random numbers. Algorithms
that use such sequences may have superior convergence.
Faure sequences, in particular, seem to have become popular
in mathematical finance simulations.
</p>
<p>
<b>FAURE</b> is adapted from code in ACM TOMS Algorithm 647.
The original, true, correct version of ACM TOMS Algorithm 647
is available in the TOMS subdirectory of
<a href = "http://www.netlib.org/">the NETLIB web site</a>.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>FAURE</b> is available in
<a href = "../../cpp_src/faure/faure.html">a C++ version</a> and
<a href = "../../f_src/faure/faure.html">a FORTRAN90 version</a> and
<a href = "../../m_src/faure/faure.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/cvt/cvt.html">
CVT</a>,
a FORTRAN90 library which
computes elements of a Centroidal Voronoi Tessellation.
</p>
<p>
<a href = "../../datasets/faure/faure.html">
FAURE</a>,
a dataset directory which
contains files of sample Faure datasets.
</p>
<p>
<a href = "../../f_src/faure_dataset/faure_dataset.html">
FAURE_DATASET</a>,
a FORTRAN90 program which
can create a Faure dataset.
</p>
<p>
<a href = "../../f_src/grid/grid.html">
GRID</a>,
a FORTRAN90 library which
computes elements of a grid dataset.
</p>
<p>
<a href = "../../f_src/halton/halton.html">
HALTON</a>,
a FORTRAN90 library which
computes elements of a Halton quasirandom sequence.
</p>
<p>
<a href = "../../f_src/hammersley/hammersley.html">
HAMMERSLEY</a>,
a FORTRAN90 library which
computes elements of a Hammersley quasirandom sequence.
</p>
<p>
<a href = "../../f_src/hex_grid/hex_grid.html">
HEX_GRID</a>,
a FORTRAN90 library which
computes elements of a hexagonal grid dataset.
</p>
<p>
<a href = "../../f_src/hex_grid_angle/hex_grid_angle.html">
HEX_GRID_ANGLE</a>,
a FORTRAN90 library which
computes elements of an angled hexagonal grid dataset.
</p>
<p>
<a href = "../../f_src/ihs/ihs.html">
IHS</a>,
a FORTRAN90 library which
computes elements of an improved distributed Latin hypercube dataset.
</p>
<p>
<a href = "../../f_src/latin_center/latin_center.html">
LATIN_CENTER</a>,
a FORTRAN90 library which
computes elements of a Latin Hypercube dataset, choosing center points.
</p>
<p>
<a href = "../../f_src/latin_edge/latin_edge.html">
LATIN_EDGE</a>,
a FORTRAN90 library which
computes elements of a Latin Hypercube dataset, choosing edge points.
</p>
<p>
<a href = "../../f_src/latin_random/latin_random.html">
LATIN_RANDOM</a>,
a FORTRAN90 library which
computes elements of a Latin Hypercube dataset, choosing
points at random.
</p>
<p>
<a href = "../../f_src/lattice_rule/lattice_rule.html">
LATTICE_RULE</a>,
a FORTRAN90 library which
approximates multidimensional integrals using lattice rules.
</p>
<p>
<a href = "../../f_src/lcvt/lcvt.html">
LCVT</a>,
a FORTRAN90 library which
computes a latinized Centroidal Voronoi Tessellation.
</p>
<p>
<a href = "../../f_src/niederreiter2/niederreiter2.html">
NIEDERREITER2</a>,
a FORTRAN90 library which
computes elements of a Niederreiter quasirandom sequence with base 2.
</p>
<p>
<a href = "../../f_src/normal/normal.html">
NORMAL</a>,
a FORTRAN90 library which
computes elements of a sequence of pseudorandom normally distributed values.
</p>
<p>
<a href = "../../f_src/sobol/sobol.html">
SOBOL</a>,
a FORTRAN90 library which
computes elements of a Sobol quasirandom sequence.
</p>
<p>
<a href = "../../f_src/toms647/toms647.html">
TOMS647</a>,
a FORTRAN90 library which
is a version of ACM TOMS algorithm 647,
for evaluating Faure, Halton and Sobol sequences.
</p>
<p>
<a href = "../../f_src/uniform/uniform.html">
UNIFORM</a>,
a FORTRAN90 library which
computes elements of a uniform pseudorandom sequence.
</p>
<p>
<a href = "../../f_src/van_der_corput/van_der_corput.html">
VAN_DER_CORPUT</a>,
a FORTRAN90 library which
computes elements of a van der Corput quasirandom sequence.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Paul Bratley, Bennett Fox, Harald Niederreiter,<br>
Implementation and Tests of Low Discrepancy Sequences,<br>
ACM Transactions on Modeling and Computer Simulation,<br>
Volume 2, Number 3, July 1992, pages 195-213.
</li>
<li>
Henri Faure,<br>
Discrepance de suites associees a un systeme de numeration
(en dimension s),<br>
Acta Arithmetica,<br>
Volume 41, 1982, pages 337-351.
</li>
<li>
Henri Faure,<br>
Good permutations for extreme discrepancy,<br>
Journal of Number Theory,<br>
Volume 42, 1992, pages 47-56.
</li>
<li>
Bennett Fox,<br>
Algorithm 647:
Implementation and Relative Efficiency of Quasirandom
Sequence Generators,<br>
ACM Transactions on Mathematical Software,<br>
Volume 12, Number 4, December 1986, pages 362-376.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "faure.f90">faure.f90</a>, the source code;
</li>
<li>
<a href = "faure.sh">faure.sh</a>,
commands to compile the source code;
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "faure_prb.f90">faure_prb.f90</a>,
the sample test code;
</li>
<li>
<a href = "faure_prb.sh">faure_prb.sh</a>,
commands to compile the test code;
</li>
<li>
<a href = "faure_prb_output.txt">faure_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>BINOMIAL_TABLE</b> computes a table of bionomial coefficients MOD QS.
</li>
<li>
<b>FAURE</b> generates a new quasirandom Faure vector with each call.
</li>
<li>
<b>FAURE_GENERATE</b> generates a Faure dataset.
</li>
<li>
<b>GET_UNIT</b> returns a free FORTRAN unit number.
</li>
<li>
<b>I4_LOG_I4</b> returns the logarithm of an I4 to an I4 base.
</li>
<li>
<b>PRIME_GE</b> returns the smallest prime greater than or equal to N.
</li>
<li>
<b>PRIME</b> returns any of the first PRIME_MAX prime numbers.
</li>
<li>
<b>R8MAT_WRITE</b> writes an R8MAT file.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 11 December 2009.
</i>
</body>
</html>