-
Notifications
You must be signed in to change notification settings - Fork 59
/
tetrahedron_monte_carlo.html
266 lines (231 loc) · 7.35 KB
/
tetrahedron_monte_carlo.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
<html>
<head>
<title>
TETRAHEDRON_MONTE_CARLO - Monte Carlo Integral Estimates over a Tetrahedron
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
TETRAHEDRON_MONTE_CARLO <br> Monte Carlo Integral Estimates over a Tetrahedron
</h1>
<hr>
<p>
<b>TETRAHEDRON_MONTE_CARLO</b>
is a FORTRAN90 library which
estimates the integral of a function over a tetrahedron using the Monte Carlo method.
</p>
<p>
The library makes it relatively easy to compare different methods of
producing sample points in the tetrahedron, and to vary the tetrahedron over
which integration is carried out.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TETRAHEDRON_MONTE_CARLO</b> is available in
<a href = "../../cpp_src/tetrahedron_monte_carlo/tetrahedron_monte_carlo.html">a C++ version</a> and
<a href = "../../f_src/tetrahedron_monte_carlo/tetrahedron_monte_carlo.html">a FORTRAN90 version</a> and
<a href = "../../m_src/tetrahedron_monte_carlo/tetrahedron_monte_carlo.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../f_src/felippa/felippa.html">
FELIPPA</a>,
a FORTRAN90 library which
defines quadrature rules for lines, triangles, quadrilaterals,
pyramids, wedges, tetrahedrons and hexahedrons.
</p>
<p>
<a href = "../../f_src/gm_rule/gm_rule.html">
GM_RULE</a>,
a FORTRAN90 library which
defines Grundmann-Moeller rules for quadrature over a triangle, tetrahedron,
or general M-dimensional simplex.
</p>
<p>
<a href = "../../f_src/keast/keast.html">
KEAST</a>,
a FORTRAN90 library which
defines a number of quadrature rules for a tetrahedron.
</p>
<p>
<a href = "../../f_src/ncc_tetrahedron/ncc_tetrahedron.html">
NCC_TETRAHEDRON</a>,
a FORTRAN90 library which
defines Newton-Cotes Closed quadrature rules on a tetrahedron.
</p>
<p>
<a href = "../../f_src/nco_tetrahedron/nco_tetrahedron.html">
NCO_TETRAHEDRON</a>,
a FORTRAN90 library which
defines Newton-Cotes Open quadrature rules on a tetrahedron.
</p>
<p>
<a href = "../../f_src/random_data/random_data.html">
RANDOM_DATA</a>,
a FORTRAN90 library which
generates sample points for
various probability distributions, spatial dimensions, and geometries;
</p>
<p>
<a href = "../../f_src/stroud/stroud.html">
STROUD</a>,
a FORTRAN90 library which
defines quadrature rules for a variety of multidimensional reqions.
</p>
<p>
<a href = "../../f_src/tetrahedron_exactness/tetrahedron_exactness.html">
TETRAHEDRON_EXACTNESS</a>,
a FORTRAN90 program which
investigates the polynomial exactness of a quadrature rule for the tetrahedron.
</p>
<p>
<a href = "../../f_src/triangle_monte_carlo/triangle_monte_carlo.html">
TRIANGLE_MONTE_CARLO</a>,
a FORTRAN90 program which
uses the Monte Carlo method to estimate integrals over a triangle.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Claudio Rocchini, Paolo Cignoni,<br>
Generating Random Points in a Tetrahedron,<br>
Journal of Graphics Tools,<br>
Volume 5, Number 4, 2000, pages 9-12.
</li>
<li>
Reuven Rubinstein,<br>
Monte Carlo Optimization, Simulation and Sensitivity of
Queueing Networks,<br>
Krieger, 1992,<br>
ISBN: 0894647644,<br>
LC: QA298.R79.
</li>
<li>
Greg Turk,<br>
Generating Random Points in a Triangle,<br>
in Graphics Gems I,<br>
edited by Andrew Glassner,<br>
AP Professional, 1990,<br>
ISBN: 0122861663,<br>
LC: T385.G697
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "tetrahedron_monte_carlo.f90">tetrahedron_monte_carlo.f90</a>, the source code.
</li>
<li>
<a href = "tetrahedron_monte_carlo.sh">tetrahedron_monte_carlo.sh</a>,
commands to compile the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "tetrahedron_monte_carlo_prb.f90">tetrahedron_monte_carlo_prb.f90</a>,
a sample calling program.
</li>
<li>
<a href = "tetrahedron_monte_carlo_prb.sh">tetrahedron_monte_carlo_prb.sh</a>,
commands to compile and run the sample program.
</li>
<li>
<a href = "tetrahedron_monte_carlo_prb_output.txt">tetrahedron_monte_carlo_prb_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>R8MAT_DET_4D</b> computes the determinant of a 4 by 4 R8MAT.
</li>
<li>
<b>R8MAT_TRANSPOSE_PRINT</b> prints an R8MAT, transposed.
</li>
<li>
<b>R8MAT_TRANSPOSE_PRINT_SOME</b> prints some of an R8MAT, transposed.
</li>
<li>
<b>R8VEC_UNIFORM_01</b> returns a unit pseudorandom R8VEC.
</li>
<li>
<b>REFERENCE_TO_PHYSICAL_TET4</b> maps TET4 reference points to physical points.
</li>
<li>
<b>TETRAHEDRON_INTEGRAND_01</b> evaluates 1 integrand function.
</li>
<li>
<b>TETRAHEDRON_INTEGRAND_02</b> evaluates 3 integrand functions.
</li>
<li>
<b>TETRAHEDRON_INTEGRAND_03</b> evaluates 6 integrand functions.
</li>
<li>
<b>TETRAHEDRON_INTEGRAND_04</b> evaluates 10 integrand functions.
</li>
<li>
<b>TETRAHEDRON_INTEGRAND_05</b> evaluates 15 integrand functions.
</li>
<li>
<b>TETRAHEDRON_MONTE_CARLO</b> applies the Monte Carlo rule to integrate a function.
</li>
<li>
<b>TETRAHEDRON_UNIT_SAMPLE_01</b> selects points from the unit tetrahedron.
</li>
<li>
<b>TETRAHEDRON_UNIT_SAMPLE_02</b> selects points from the unit tetrahedron.
</li>
<li>
<b>TETRAHEDRON_UNIT_SAMPLE_03</b> selects points from the unit tetrahedron.
</li>
<li>
<b>TETRAHEDRON_UNIT_SAMPLE_04</b> selects points from the unit tetrahedron.
</li>
<li>
<b>TETRAHEDRON_VOLUME</b> computes the volume of a tetrahedron in 3D.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../f_src.html">
the FORTRAN90 source codes</a>.
</p>
<hr>
<i>
Last revised on 16 August 2009.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>