This repository has been archived by the owner on Dec 3, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
fuzzy.c
633 lines (510 loc) · 16 KB
/
fuzzy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
// ssdeep
// Copyright (C) 2012 Kyrus
// Copyright (C) 2006 ManTech International Corporation
//
// $Id: fuzzy.c 152 2012-07-14 18:09:45Z jessekornblum $
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
// The code in this file, and this file only, is based on SpamSum, part
// of the Samba project:
// http://www.samba.org/ftp/unpacked/junkcode/spamsum/
//
// Because of where this file came from, any program that contains it
// must be licensed under the terms of the General Public License (GPL).
// See the file COPYING for details. The author's original comments
// about licensing are below:
//
//
//
// This is a checksum routine that is specifically designed for spam.
// Copyright Andrew Tridgell <[email protected]> 2002
//
// This code is released under the GNU General Public License version 2
// or later. Alteratively, you may also use this code under the terms
// of the Perl Artistic license.
//
// If you wish to distribute this code under the terms of a different
// free software license then please ask me. If there is a good reason
// then I will probably say yes.
//
#include "main.h"
#include "fuzzy.h"
off_t find_file_size(FILE *h);
#define MIN_BLOCKSIZE 3
#define ROLLING_WINDOW 7
#define HASH_PRIME 0x01000193
#define HASH_INIT 0x28021967
// Our input buffer when reading files to hash
#define BUFFER_SIZE 8192
static struct {
unsigned char window[ROLLING_WINDOW];
uint32_t h1, h2, h3;
uint32_t n;
} roll_state;
//
// A rolling hash, based on the Adler checksum. By using a rolling hash
// we can perform auto resynchronisation after inserts/deletes
//
// internally, h1 is the sum of the bytes in the window and h2
// is the sum of the bytes times the index
//
// h3 is a shift/xor based rolling hash, and is mostly needed to ensure that
// we can cope with large blocksize values
//
static inline uint32_t roll_hash(unsigned char c)
{
roll_state.h2 -= roll_state.h1;
roll_state.h2 += ROLLING_WINDOW * c;
roll_state.h1 += c;
roll_state.h1 -= roll_state.window[roll_state.n % ROLLING_WINDOW];
roll_state.window[roll_state.n % ROLLING_WINDOW] = c;
roll_state.n++;
// The original spamsum AND'ed this value with 0xFFFFFFFF which
// in theory should have no effect. This AND has been removed
// for performance (jk)
roll_state.h3 = (roll_state.h3 << 5); //& 0xFFFFFFFF;
roll_state.h3 ^= c;
return roll_state.h1 + roll_state.h2 + roll_state.h3;
}
//
// reset the state of the rolling hash and return the initial rolling hash value
//
static uint32_t roll_reset(void)
{
memset(&roll_state, 0, sizeof(roll_state));
return 0;
}
// a simple non-rolling hash, based on the FNV hash
static inline uint32_t sum_hash(unsigned char c, uint32_t h)
{
h *= HASH_PRIME;
h ^= c;
return h;
}
typedef struct _ss_context {
char *ret, *p;
// This is the file size, which should be uint64_t, but we
// generally do not process files that large here.
uint32_t total_chars;
uint32_t h, h2, h3;
uint32_t j, n, i, k;
uint32_t block_size;
char ret2[SPAMSUM_LENGTH/2 + 1];
} ss_context;
static void ss_destroy(ss_context *ctx)
{
if (ctx->ret != NULL)
free(ctx->ret);
}
static int ss_init(ss_context *ctx, FILE *handle)
{
if (NULL == ctx)
return TRUE;
ctx->ret = (char *)malloc(sizeof(char) * FUZZY_MAX_RESULT);
if (ctx->ret == NULL)
return TRUE;
if (handle != NULL)
ctx->total_chars = find_file_size(handle);
ctx->block_size = MIN_BLOCKSIZE;
while (ctx->block_size * SPAMSUM_LENGTH < ctx->total_chars) {
ctx->block_size = ctx->block_size * 2;
}
return FALSE;
}
static const char *b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static void ss_engine(ss_context *ctx,
const unsigned char *buffer,
uint32_t buffer_size)
{
uint32_t i;
if (NULL == ctx || NULL == buffer)
return;
for ( i = 0 ; i < buffer_size ; ++i)
{
//
// at each character we update the rolling hash and
// the normal hash. When the rolling hash hits the
// reset value then we emit the normal hash as a
// element of the signature and reset both hashes
//
ctx->h = roll_hash(buffer[i]);
ctx->h2 = sum_hash(buffer[i], ctx->h2);
ctx->h3 = sum_hash(buffer[i], ctx->h3);
if (ctx->h % ctx->block_size == (ctx->block_size-1)) {
// we have hit a reset point. We now emit a
// hash which is based on all chacaters in the
// piece of the message between the last reset
// point and this one
ctx->p[ctx->j] = b64[ctx->h2 % 64];
if (ctx->j < SPAMSUM_LENGTH-1) {
// we can have a problem with the tail
// overflowing. The easiest way to
// cope with this is to only reset the
// second hash if we have room for
// more characters in our
// signature. This has the effect of
// combining the last few pieces of
// the message into a single piece
ctx->h2 = HASH_INIT;
(ctx->j)++;
}
}
// this produces a second signature with a block size
// of block_size*2. By producing dual signatures in
// this way the effect of small changes in the message
// size near a block size boundary is greatly reduced.
if (ctx->h % (ctx->block_size*2) == ((ctx->block_size*2)-1)) {
ctx->ret2[ctx->k] = b64[ctx->h3 % 64];
if (ctx->k < SPAMSUM_LENGTH/2-1) {
ctx->h3 = HASH_INIT;
(ctx->k)++;
}
}
}
}
static int ss_update(ss_context *ctx, FILE *handle)
{
uint32_t bytes_read;
unsigned char *buffer;
if (NULL == ctx || NULL == handle)
return TRUE;
buffer = (unsigned char *)malloc(sizeof(unsigned char) * BUFFER_SIZE);
if (buffer == NULL)
return TRUE;
snprintf(ctx->ret, 12, "%u:", ctx->block_size);
ctx->p = ctx->ret + strlen(ctx->ret);
memset(ctx->p, 0, SPAMSUM_LENGTH+1);
memset(ctx->ret2, 0, sizeof(ctx->ret2));
ctx->k = ctx->j = 0;
ctx->h3 = ctx->h2 = HASH_INIT;
ctx->h = roll_reset();
while ((bytes_read = fread(buffer,sizeof(unsigned char),BUFFER_SIZE,handle)) > 0)
{
ss_engine(ctx,buffer,bytes_read);
}
if (ctx->h != 0)
{
ctx->p[ctx->j] = b64[ctx->h2 % 64];
ctx->ret2[ctx->k] = b64[ctx->h3 % 64];
}
strcat(ctx->p+ctx->j, ":");
strcat(ctx->p+ctx->j, ctx->ret2);
free(buffer);
return FALSE;
}
int fuzzy_hash_file(FILE *handle,
char *result)
{
ss_context *ctx;
uint64_t filepos;
int done = FALSE;
if (NULL == handle || NULL == result)
return TRUE;
ctx = (ss_context *)malloc(sizeof(ss_context));
if (ctx == NULL)
return TRUE;
filepos = ftello(handle);
ss_init(ctx, handle);
while (!done)
{
if (fseeko(handle,0,SEEK_SET))
return TRUE;
ss_update(ctx,handle);
// our blocksize guess may have been way off - repeat if necessary
if (ctx->block_size > MIN_BLOCKSIZE && ctx->j < SPAMSUM_LENGTH/2)
ctx->block_size = ctx->block_size / 2;
else
done = TRUE;
}
strncpy(result,ctx->ret,FUZZY_MAX_RESULT);
ss_destroy(ctx);
free(ctx);
if (fseeko(handle,filepos,SEEK_SET))
return TRUE;
return FALSE;
}
extern int fuzzy_hash_filename(const char * filename,
char * result)
{
int status;
if (NULL == filename || NULL == result)
return TRUE;
FILE * handle = fopen(filename,"rb");
if (NULL == handle)
return TRUE;
status = fuzzy_hash_file(handle,result);
fclose(handle);
return status;
}
int fuzzy_hash_buf(const unsigned char *buf,
uint32_t buf_len,
char *result)
{
ss_context *ctx;
int done = FALSE;
if (NULL == buf || NULL == result)
return TRUE;
ctx = (ss_context *)malloc(sizeof(ss_context));
if (ctx == NULL)
return TRUE;
ctx->total_chars = buf_len;
ss_init(ctx, NULL);
while (!done)
{
snprintf(ctx->ret, 12, "%u:", ctx->block_size);
ctx->p = ctx->ret + strlen(ctx->ret);
memset(ctx->p, 0, SPAMSUM_LENGTH+1);
memset(ctx->ret2, 0, sizeof(ctx->ret2));
ctx->k = ctx->j = 0;
ctx->h3 = ctx->h2 = HASH_INIT;
ctx->h = roll_reset();
ss_engine(ctx,buf,buf_len);
// our blocksize guess may have been way off - repeat if necessary
if (ctx->block_size > MIN_BLOCKSIZE && ctx->j < SPAMSUM_LENGTH/2)
ctx->block_size = ctx->block_size / 2;
else
done = TRUE;
if (ctx->h != 0)
{
ctx->p[ctx->j] = b64[ctx->h2 % 64];
ctx->ret2[ctx->k] = b64[ctx->h3 % 64];
}
strcat(ctx->p+ctx->j, ":");
strcat(ctx->p+ctx->j, ctx->ret2);
}
strncpy(result,ctx->ret,FUZZY_MAX_RESULT);
ss_destroy(ctx);
free(ctx);
return FALSE;
}
//
// We only accept a match if we have at least one common substring in
// the signature of length ROLLING_WINDOW. This dramatically drops the
// false positive rate for low score thresholds while having
// negligable affect on the rate of spam detection.
//
// return 1 if the two strings do have a common substring, 0 otherwise
//
static int has_common_substring(const char *s1, const char *s2)
{
int i, j;
int num_hashes;
uint32_t hashes[SPAMSUM_LENGTH];
// there are many possible algorithms for common substring
// detection. In this case I am re-using the rolling hash code
// to act as a filter for possible substring matches
roll_reset();
memset(hashes, 0, sizeof(hashes));
// first compute the windowed rolling hash at each offset in
// the first string
for (i=0;s1[i];i++)
{
hashes[i] = roll_hash((unsigned char)s1[i]);
}
num_hashes = i;
roll_reset();
// now for each offset in the second string compute the
// rolling hash and compare it to all of the rolling hashes
// for the first string. If one matches then we have a
// candidate substring match. We then confirm that match with
// a direct string comparison */
for (i=0;s2[i];i++) {
uint32_t h = roll_hash((unsigned char)s2[i]);
if (i < ROLLING_WINDOW-1) continue;
for (j=ROLLING_WINDOW-1;j<num_hashes;j++)
{
if (hashes[j] != 0 && hashes[j] == h)
{
// we have a potential match - confirm it
if (strlen(s2+i-(ROLLING_WINDOW-1)) >= ROLLING_WINDOW &&
strncmp(s2+i-(ROLLING_WINDOW-1),
s1+j-(ROLLING_WINDOW-1),
ROLLING_WINDOW) == 0)
{
return 1;
}
}
}
}
return 0;
}
// eliminate sequences of longer than 3 identical characters. These
// sequences contain very little information so they tend to just bias
// the result unfairly
static char *eliminate_sequences(const char *str)
{
char *ret;
size_t i, j, len;
ret = strdup(str);
if (!ret)
return NULL;
len = strlen(str);
for (i=j=3 ; i<len ; i++)
{
if (str[i] != str[i-1] ||
str[i] != str[i-2] ||
str[i] != str[i-3])
{
ret[j++] = str[i];
}
}
ret[j] = 0;
return ret;
}
//
// this is the low level string scoring algorithm. It takes two strings
// and scores them on a scale of 0-100 where 0 is a terrible match and
// 100 is a great match. The block_size is used to cope with very small
// messages.
//
static uint32_t score_strings(const char *s1,
const char *s2,
unsigned int block_size)
{
uint32_t score;
size_t len1, len2;
int edit_distn(const char *from, int from_len, const char *to, int to_len);
len1 = strlen(s1);
len2 = strlen(s2);
if (len1 > SPAMSUM_LENGTH || len2 > SPAMSUM_LENGTH) {
// not a real spamsum signature?
return 0;
}
// the two strings must have a common substring of length
// ROLLING_WINDOW to be candidates
if (has_common_substring(s1, s2) == 0) {
return 0;
}
// compute the edit distance between the two strings. The edit distance gives
// us a pretty good idea of how closely related the two strings are
score = edit_distn(s1, len1, s2, len2);
// scale the edit distance by the lengths of the two
// strings. This changes the score to be a measure of the
// proportion of the message that has changed rather than an
// absolute quantity. It also copes with the variability of
// the string lengths.
score = (score * SPAMSUM_LENGTH) / (len1 + len2);
// at this stage the score occurs roughly on a 0-64 scale,
// with 0 being a good match and 64 being a complete
// mismatch
// rescale to a 0-100 scale (friendlier to humans)
score = (100 * score) / 64;
// it is possible to get a score above 100 here, but it is a
// really terrible match
if (score >= 100)
return 0;
// now re-scale on a 0-100 scale with 0 being a poor match and
// 100 being a excellent match.
score = 100 - score;
// printf ("len1: %"PRIu32" len2: %"PRIu32"\n", len1, len2);
// when the blocksize is small we don't want to exaggerate the match size
if (score > block_size/MIN_BLOCKSIZE * MIN(len1, len2)) {
score = block_size/MIN_BLOCKSIZE * MIN(len1, len2);
}
return score;
}
//
// Given two spamsum strings return a value indicating the degree
// to which they match.
//
int fuzzy_compare(const char *str1, const char *str2)
{
unsigned int block_size1, block_size2;
uint32_t score = 0;
char *s1, *s2;
char *s1_1, *s1_2, *s1_3;
char *s2_1, *s2_2, *s2_3;
if (NULL == str1 || NULL == str2)
return -1;
// each spamsum is prefixed by its block size
if (sscanf(str1, "%u:", &block_size1) != 1 ||
sscanf(str2, "%u:", &block_size2) != 1) {
return -1;
}
// if the blocksizes don't match then we are comparing
// apples to oranges. This isn't an 'error' per se. We could
// have two valid signatures, but they can't be compared.
if (block_size1 != block_size2 &&
block_size1 != block_size2*2 &&
block_size2 != block_size1*2) {
return 0;
}
// move past the prefix
str1 = strchr(str1, ':');
str2 = strchr(str2, ':');
if (!str1 || !str2) {
// badly formed ...
return -1;
}
// there is very little information content is sequences of
// the same character like 'LLLLL'. Eliminate any sequences
// longer than 3. This is especially important when combined
// with the has_common_substring() test below.
// NOTE: This function duplciates str1 and str2
s1 = eliminate_sequences(str1+1);
s2 = eliminate_sequences(str2+1);
if (!s1 || !s2)
return 0;
// now break them into the two pieces
s1_1 = s1;
s2_1 = s2;
s1_2 = strchr(s1, ':');
s2_2 = strchr(s2, ':');
if (!s1_2 || !s2_2) {
// a signature is malformed - it doesn't have 2 parts
free(s1); free(s2);
return -1;
}
// Chop the first substring. We terminate the first substring
// and then advance the pointer to the start of the second substring.
*s1_2 = 0;
s1_2++;
*s2_2 = 0;
s2_2++;
// Chop the second string at the comma--just before the filename.
// If the strings don't have a comma (i.e. don't have a filename)
// that's ok. It's not an error. This function can be called on
// signatures which don't have filenames attached.
// We also don't have to advance past the comma however. We don't care
// about the filename
s1_3 = strchr(s1_2, ',');
s2_3 = strchr(s2_2, ',');
if (s1_3 != NULL)
*s1_3 = 0;
if (s2_3 != NULL)
*s2_3 = 0;
// each signature has a string for two block sizes. We now
// choose how to combine the two block sizes. We checked above
// that they have at least one block size in common
if (block_size1 == block_size2)
{
uint32_t score1, score2;
score1 = score_strings(s1_1, s2_1, block_size1);
score2 = score_strings(s1_2, s2_2, block_size2);
score = MAX(score1, score2);
}
else if (block_size1 == block_size2*2)
{
score = score_strings(s1_1, s2_2, block_size1);
}
else
{
score = score_strings(s1_2, s2_1, block_size2);
}
free(s1);
free(s2);
return (int)score;
}