-
Notifications
You must be signed in to change notification settings - Fork 23
/
Chapter3_v1.tex
916 lines (634 loc) · 26.4 KB
/
Chapter3_v1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
\ifdefined\ishandout
\documentclass[11pt,english,handout]{beamer}
\else
\documentclass[11pt,english]{beamer}
\fi
%\documentclass[11pt]{beamer}
\usepackage{mathptmx}
\renewcommand{\sfdefault}{lmss}
\renewcommand{\familydefault}{\sfdefault}
\usepackage[T1]{fontenc}
\usepackage[latin9]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\PassOptionsToPackage{normalem}{ulem}
\usepackage{ulem}
\usepackage{caption}
\captionsetup{labelformat=empty}
\usepackage{bbm}
\usepackage{upgreek}
\usepackage{graphicx}
\setbeamertemplate{section in toc}[sections numbered]
\makeatletter
\usepackage{caption}
\captionsetup[table]{skip=10pt}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Textclass specific LaTeX commands.
% this default might be overridden by plain title style
\newcommand\makebeamertitle{\frame{\maketitle}}%
% (ERT) argument for the TOC
\AtBeginDocument{%
\let\origtableofcontents=\tableofcontents
\def\tableofcontents{\@ifnextchar[{\origtableofcontents}{\gobbletableofcontents}}
\def\gobbletableofcontents#1{\origtableofcontents}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
%\documentclass[presentation]{beamer}
\def\Tiny{\fontsize{7pt}{8pt}\selectfont}
\def\Normal{\fontsize{8pt}{10pt}\selectfont}
\usetheme{Madrid}
\usecolortheme{lily}
%\setbeamercovered{transparent}
\useinnertheme{rounded}
\setbeamertemplate{footline}{\hfill\Normal{\insertframenumber/\inserttotalframenumber}}
%\setbeamertemplate{footline}{}
\setbeamertemplate{navigation symbols}{}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\setbeamertemplate{footline}{\hfill\insertframenumber/\inserttotalframenumber}
\setbeamertemplate{navigation symbols}{}
%\usepackage{times} % fonts are up to you
\usepackage{graphicx}
%\usepackage{graphics}
\usepackage{epsfig}
\usepackage{bm}
\usepackage{epsf}
\usepackage{float}
\usepackage[final]{pdfpages}
\usepackage{multirow}
\usepackage{colortbl}
\usepackage{xkeyval}
%\usepackage{sgame}
%\usepackage{pst-node}
\usepackage{listings}
\usepackage{ifthen}
%\usepackage{hyperref}
\usepackage{tikz}
%\usepackage{times} % fonts are up to you
%\usepackage{graphicx}
%\usepackage{graphics}
\usepackage{epsfig,bm,epsf,float}
\usepackage[final]{pdfpages}
\usepackage{xcolor,multirow,colortbl}
\usepackage{xkeyval}
\usepackage{verbatim}
%\usepackage{sgame}
%\usepackage{pst-node}
\usepackage{listings}
%\usepackage{handoutWithNotes}
%\pgfpagesuselayout{3 on 1 with notes}[letterpaper,border shrink=5mm]
%\pgfpagesuselayout{2 on 1 with notes landscape}[letterpaper,border shrink=5mm]
\usepackage{setspace}
\usepackage{ragged2e}
\setbeamersize{text margin left=1em,text margin right=1em} % CambridgeUS spacing if you use default instead
%\pdfmapfile{+sansmathaccent.map}
% Table formatting
\usepackage{booktabs}
% Decimal align
\usepackage{dcolumn}
\newcolumntype{d}[0]{D{.}{.}{5}}
\global\long\def\expec#1{\mathbb{E}\left[#1\right]}
\global\long\def\var#1{\mathrm{Var}\left[#1\right]}
\global\long\def\cov#1{\mathrm{Cov}\left[#1\right]}
\global\long\def\prob#1{\mathrm{Prob}\left[#1\right]}
\global\long\def\one{\mathbf{1}}
\global\long\def\diag{\operatorname{diag}}
\global\long\def\expe#1#2{\mathbb{E}_{#1}\left[#2\right]}
\DeclareMathOperator*{\plim}{\text{plim}}
%\usefonttheme[onlymath]{serif}
\usepackage{appendixnumberbeamer}
\renewcommand{\thefootnote}{}
\setbeamertemplate{footline}
{
\leavevmode%
% \hbox{%
% \begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
%\usebeamerfont{date in head/foot}\insertshortdate{}\hspace*{2em}%
\hfill
%turning the next line into a comment, erases the frame numbers
\insertframenumber{}\hspace*{2ex}\vspace{1ex}
% \end{beamercolorbox}}%
}
\definecolor{blue}{RGB}{0, 0, 210}
\definecolor{red}{RGB}{170, 0, 0}
\makeatother
\usepackage[english]{babel}
\usepackage{tikz}
\newcommand*\circled[1]{\tikz[baseline=(char.base)]{ \node[circle,ball color=structure.fg, shade, color=white,inner sep=1.2pt] (char) {\tiny #1};}}
\makeatletter
\let\save@measuring@true\measuring@true
\def\measuring@true{%
\save@measuring@true
\def\beamer@sortzero##1{\beamer@ifnextcharospec{\beamer@sortzeroread{##1}}{}}%
\def\beamer@sortzeroread##1<##2>{}%
\def\beamer@finalnospec{}%
}
\makeatother
\setbeamersize{text margin left= .8em,text margin right=1em}
\newenvironment{wideitemize}{\itemize\addtolength{\itemsep}{10pt}}{\enditemize}
\newenvironment{wideitemizeshort}{\itemize}{\enditemize}
\newcommand{\indep}{\perp\!\!\!\!\perp}
\begin{document}
%% Title slide
\begin{frame}[noframenumbering]{}
\vspace{0.5cm}
\title[]{Chapter 3: Asymptotic Statistics}
\author{Jonathan Roth}
\date{Mathematical Econometrics I \\ Brown University\\Fall 2023}
\titlepage {\small{}\ }\thispagestyle{empty} \vspace{-30pt}
\end{frame}
\begin{frame}{Outline}
1. Overview
\vspace{0.8cm}
2. LLN, CLT, and CMT
\vspace{0.8cm}
3. Putting Asymptotics into Practice
\end{frame}
\begin{frame}{Motivation}
\begin{wideitemize}
\item
We've seen how we can test hypotheses about population means using information from the sample mean $\hat\mu$ when it is \textbf{normally distributed} with a known variance
\item
This situation arises when we know that $Y_i\sim \mathrm{N}(\mu,\sigma^2)$ with known $\sigma$
\item
But this situation is rare... how do we ``do inference'' more generally?
\pause
\item
Fortunately, the assumption of normally distributed sample means turns out to be a good \textbf{approximation} when samples are large
\pause
\item
What we mean by a ``good approximation'' is formalized by asymptotic statistics, which considers the distribution of $\hat\mu$ in the limit as $N \rightarrow \infty$
\end{wideitemize}
\end{frame}
\begin{frame}{Overview of Important Results}
\begin{wideitemize}
\item The \textbf{Law of Large Numbers} (LLN) says that when $N$ is large, $\hat\mu$ is close to $\mu$ with very high probability
\pause
\item The \textbf{Central Limit Theorem} (CLT) says that when $N$ is large, the distribution of $\hat\mu$ is approximately normally distributed with mean $\mu$ and variance $\sigma^2/n$
\pause
\item The \textbf{Continuous Mapping Theorem} says that when $N$ is large, continuous functions of $\hat\mu$, say $g(\hat\mu)$, are also close to $g(\mu)$
\end{wideitemize}
\end{frame}
\begin{frame}{Outline}
\textcolor{red!75!green!50!blue!25!gray}{1. Overview} $\checkmark$
\vspace{0.8cm}
2. LLN, CLT, and CMT
\vspace{0.8cm}
\textcolor{red!75!green!50!blue!25!gray}{3. Putting Asymptotics into Practice}
\end{frame}
\begin{frame}{Convergence in Probability}
\begin{wideitemize}
\item
Intuitively, a random variable $X_N$ \textbf{converges in probability} to $x$ if the probability that $X_N$ is ``close to'' $x$ is almost 1 when $N$ is large
\pause
\item
Formally, we say $X_N$ converges in probability to $x$, $X_n \rightarrow_p x$ or $plim \, X_n =x $, if for all $\epsilon > 0$,
$$P(|X_N - x| > \epsilon) \rightarrow 0 $$
\pause
\item
If $X_n \rightarrow_p x$ for a constant $x$, we say $X_n$ is \textit{consistent} for $x$
\pause
\item
Typically $x$ is a constant, although we will sometimes also say $X_N \rightarrow X$ for $X$ a random variable (using the same definition as above)
\end{wideitemize}
\end{frame}
\begin{frame}{Convergence in Probability (Cont.)}
\begin{wideitemize}
\item Useful fact: if $E[ (X_N - x)^2 ] \rightarrow 0$, then $X_N \rightarrow_p x$
\pause
\item
\textbf{Proof} (you won't be responsible for this): \\
By the law of iterated expectations,
\begin{align*}
E[ (X_N - x)^2 ]=& P( |X_n - x| > \epsilon ) E[ (X_N - x)^2 | |X_n - x| > \epsilon ] + \\
& P( |X_n - x| \leq \epsilon ) E[ (X_N - x)^2 | |X_n - x| \leq \epsilon ] \\
\pause \geq & P( |X_n - x| > \epsilon ) \epsilon^2 + 0
\end{align*}
\pause
\noindent This implies that
$$P( |X_N - x| > \epsilon ) \leq E[ (X_N - x)^2 ] / \epsilon^2 \text{ (Chebychev's Inequality) }$$
\pause
Hence, $E[ (X_N - x)^2 ] \rightarrow 0$ implies $P( |X_N - x| > \epsilon ) \rightarrow 0$
\end{wideitemize}
\end{frame}
\begin{frame}{Law of Large Numbers}
\begin{wideitemize}
\item \textbf{Law of Large Numbers}. Suppose that $Y_1,...,Y_N$ are drawn $iid$ from a distribution with $Var(Y_i) = \sigma^2 < \infty$. Then $$\hat\mu_N = \frac{1}{N} \sum_{i=1}^{N} Y_i \rightarrow_p \mu = E[Y_i]$$
\item
In words: as the sample gets large, the sample mean will be close to the population mean with high probability.
\pause
\item
\textbf{Proof:} We saw last chapter that $E[\hat\mu_N] = \mu$ and $Var(\hat\mu_N) = \sigma^2 / N$. \\
Thus, $$Var(\hat\mu_N) = E[ (\hat\mu_N - \mu )^2 ] = \sigma^2/N \rightarrow 0 $$ \\
Hence, $\hat\mu_N \rightarrow_p \mu$ by our ``useful fact''.
\end{wideitemize}
\end{frame}
\begin{frame}{Laws of Large Numbers Illustration}
\vspace{0.2cm}
Distribution and mean of $\frac{1}{N}\sum_i Z_i$ when $Z_i\sim \mathrm{U}(0,1)$, $\mathbf{N=1}$
\begin{center}
\includegraphics[scale=0.4]{Stata5.png} \includegraphics[scale=0.25]{sims1_2.png}
\end{center}
\end{frame}
\begin{frame}{Laws of Large Numbers Illustration}
\vspace{0.2cm}
Distribution and mean of $\frac{1}{N}\sum_i Z_i$ when $Z_i\sim \mathrm{U}(0,1)$, $\mathbf{N=10}$
\begin{center}
\includegraphics[scale=0.4]{Stata6.png} \includegraphics[scale=0.25]{sims10_2.png}
\end{center}
\end{frame}
\begin{frame}{Laws of Large Numbers Illustration}
\vspace{0.2cm}
Distribution and mean of $\frac{1}{N}\sum_i Z_i$ when $Z_i\sim \mathrm{U}(0,1)$, $\mathbf{N=100}$
\begin{center}
\includegraphics[scale=0.4]{Stata7.png} \includegraphics[scale=0.25]{sims100_2.png}
\end{center}
\end{frame}
\begin{frame}{Laws of Large Numbers Illustration}
\vspace{0.2cm}
Distribution and mean of $\frac{1}{N}\sum_i Z_i$ when $Z_i\sim \mathrm{U}(0,1)$, $\mathbf{N=1000}$
\begin{center}
\includegraphics[scale=0.4]{Stata8.png} \includegraphics[scale=0.25]{sims1000_2.png}
\end{center}
\end{frame}
\begin{frame}{Convergence in Distribution}
\begin{wideitemize}
\item
You might have noticed that the distribution of $\hat\mu$ in the simulations looks close to a normal distribution as $N$ gets large
\item
The notion of \textbf{convergence in distribution} formalizes what it means for one distribution to be close to another distribution
\pause
\item
Definition: We say that $X_N$ converges in distribution to a continuously distributed variable $X$, denoted $X_n \rightarrow_d X$ or $X_n \Rightarrow X$, if the CDF of $X_N$ converges (pointwise) to the CDF of $X$,
$$F_{X_N}(x) \rightarrow F_{X}(x) \text{ for all } x$$
% \pause
% \item
% \emph{Technical note}: if the limit $X$ is discrete, we only require $F_{X_N}(x) \rightarrow F_{X}(x)$ at points where $F(x)$ is continuous
%
% \begin{itemize}
% \item
% For example, if $X_N = 1/N$ and $X = 0$, then we say $X_N \rightarrow_d X$ even though $F_{X_N}(0) = 0$ for all $N$ while $F_X(0) = 1$
% \end{itemize}
\end{wideitemize}
\end{frame}
\begin{frame}{Central Limit Theorem}
\begin{wideitemize}
\item
\textbf{The Central Limit Theorem (CLT)} formalizes the sense in which sample means are approximately normally distributed in large samples
\pause
\item
Theorem: Suppose that $Y_1,...,Y_N$ are drawn $iid$ from a distribution with mean $\mu = E[Y_i]$ and variance $Var(Y_i) = \sigma^2 < \infty$. Then the sample mean $\hat\mu = \frac{1}{N} \sum_{i=1}^N Y_i$ satisfies
$$ \sqrt{N} (\hat\mu - \mu) \rightarrow_d N(0, \sigma^2) $$
\pause
\item
In words, the theorem says the following:
\begin{enumerate}
\normalsize{
\item
We can start with any distribution $Y_i$, possibly non-normal
\item
If we take the average of the $Y_1,...,Y_N$ in a sample sufficiently large, the distribution of $\hat\mu = \frac{1}{N} \sum_i Y_i$ is (approximately) normal!
}
\end{enumerate}
\end{wideitemize}
\end{frame}
\begin{frame}{CLT Illustration}
\vspace{0.2cm}
Distributions of $\hat{\mu}=\frac{1}{N}\sum_i X_i$ vs. $\mathrm{N}(E[\hat\mu],Var(\hat{\mu}))$: $X_i\sim \mathrm{U}(0,1)$, $\mathbf{N=1}$
\begin{center}
\includegraphics[scale=0.4]{Stata1.png} \includegraphics[scale=0.25]{sims1.png}
\end{center}
\end{frame}
\begin{frame}{CLT Illustration}
\vspace{0.2cm}
Distributions of $\hat{\mu}=\frac{1}{N}\sum_i X_i$ vs. $\mathrm{N}(E[\hat\mu],Var(\hat{\mu}))$: $X_i\sim \mathrm{U}(0,1)$, $\mathbf{N=2}$
\begin{center}
\includegraphics[scale=0.4]{Stata2.png} \includegraphics[scale=0.25]{sims2.png}
\end{center}
\end{frame}
\begin{frame}{CLT Illustration}
\vspace{0.2cm}
Distributions of $\hat{\mu}=\frac{1}{N}\sum_i X_i$ vs. $\mathrm{N}(E[\hat\mu],Var(\hat{\mu}))$: $X_i\sim \mathrm{U}(0,1)$, $\mathbf{N=5}$
\begin{center}
\includegraphics[scale=0.4]{Stata3.png} \includegraphics[scale=0.25]{sims5.png}
\end{center}
\end{frame}
\begin{frame}{CLT Illustration}
\vspace{0.2cm}
Distributions of $\hat{\mu}=\frac{1}{N}\sum_i X_i$ vs. $\mathrm{N}(E[\hat\mu],Var(\hat{\mu}))$: $X_i\sim \mathrm{U}(0,1)$, $\mathbf{N=10}$
\begin{center}
\includegraphics[scale=0.4]{Stata4.png} \includegraphics[scale=0.25]{sims10.png}
\end{center}
\end{frame}
\begin{frame}{CLT Illustration II}
\begin{center}
\includegraphics[width = 0.5\linewidth]{Galton_Board}
\end{center}
\href{https://www.youtube.com/watch?v=EvHiee7gs9Y}{https://www.youtube.com/watch?v=EvHiee7gs9Y}
\end{frame}
\begin{frame}
\centering
\includegraphics[width = 0.5\linewidth]{mind-blown}
\end{frame}
\begin{frame}{Multivariate Versions}
\begin{wideitemize}
\item
The results we've discussed extend naturally to the multivariate case
\pause
\item
For a vector $\mathbf{X_N} \in \mathbb{R}^k$, we say $\mathbf{X_N} \rightarrow_p \mathbf{x}$ if each component of $\mathbf{X_N}$ converges in probability to each component of $\mathbf{x}$.
\pause
\item
\textbf{LLN}: For $\hat{\boldsymbol{\mu}}_N$, the sample mean of $iid$ vectors $\mathbf{Y_1},...\mathbf{Y_N}$ with mean $\boldsymbol{\mu}$ and finite variance, $\hat{\boldsymbol{\mu}}_N \rightarrow_p \boldsymbol{\mu}$
\pause
\item
For a vector $\mathbf{X_N} \in \mathbb{R}^k$, we say $\mathbf{X_N} \rightarrow_d \mathbf{X}$ for $\mathbf{X}$ continuously distributed if $F_{\mathbf{X_N}}(\mathbf{x}) \rightarrow F_{\mathbf{X}}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^k$.
\item
\textbf{CLT}: For $\hat{\boldsymbol{\mu}}_N$, the sample mean of $iid$ vectors $\mathbf{Y_1},...\mathbf{Y_N}$ with mean $\boldsymbol{\mu}$ and finite variance $\boldsymbol{\Sigma}$, $\sqrt{N} (\hat{\boldsymbol{\mu}}_N -\boldsymbol{\mu}) \rightarrow_d \mathrm{N}(\mathbf{0},\boldsymbol{\Sigma})$
\end{wideitemize}
\end{frame}
\begin{frame}{Continuous Mapping Theorem}
\begin{wideitemize}
\item
Sometimes we are interested in functions of sample means (e.g., the $t$-statistic is a function of $\hat\mu$ and $\sigma$).
\pause
\item
The \textbf{continuous mapping theorem} (CMT) tells us about continuous functions of random variables that converge in distribution/probability
\pause
\item
Theorem: suppose $g(\cdot)$ is a continuous function\\
\vspace{.2cm}
If $X_N \rightarrow_p X$, then $g(X_N) \rightarrow_p g(X)$ \\
\vspace{.2cm}
\pause
If $X_N \rightarrow_d X$, then $g(X_N) \rightarrow_d g(X)$\\
\vspace{0.2cm}
\pause{}
Multivariate versions here too: If $\mathbf{X_N} \rightarrow_p \mathbf{X}$, then $g(\mathbf{X_N}) \rightarrow_p g(\mathbf{X})$ and if $\mathbf{X_N} \rightarrow_d \mathbf{X}$, then $g(\mathbf{X_N}) \rightarrow_d g(\mathbf{X})$
\end{wideitemize}
\end{frame}
\begin{frame}{Convergence of Sample Variance}
\begin{wideitemize}
\item
One useful application of the CMT is to show convergence in probability of the sample variance
\pause
\item
Let $\hat\sigma^2 = \frac{1}{N} \sum_{i=1}^N (Y_i - \hat\mu)^2$ be the sample variance of $Y_i$.
\pause
\item
Claim: if $Y_1,...,Y_N$ are $iid$ and $Var(Y_i^2)$ is finite, then $\hat\sigma^2 \rightarrow_p \sigma^2 = Var(Y_i)$.
\pause
\item
Proof: \\
We can write the sample variance as $\hat\sigma^2 = \frac{1}{N} \sum_{i=1}^N Y_i^2 - \hat\mu^2$. \\ \vspace{.1cm} \pause
First term: by the LLN, $ \frac{1}{N} \sum_{i=1}^N Y_i^2 \rightarrow_p E[Y_i^2]$. \\ \vspace{.1cm} \pause
Second term: by the LLN, $\hat\mu \rightarrow_p \mu = E[Y_i]$. Thus, by the CMT, $\hat\mu^2 \rightarrow_p E[Y_i]^2$.\\ \vspace{.1cm} \pause
Thus, by the CMT again, $\frac{1}{N} \sum_{i=1}^N Y_i^2 - \hat\mu^2 \rightarrow_p E[Y_i^2] - E[Y_i]^2 = \sigma^2$.
\end{wideitemize}
\end{frame}
\begin{frame}{Slutsky's Lemma}
\begin{wideitemize}
\item
\textbf{Slutsky's lemma} (sometimes Slutsky's theorem) summarizes a few special cases of the CMT that are very useful.
\pause
\item
Suppose that $X_N \rightarrow_p c$ for a constant $c$, and $Y_N \rightarrow_d Y$. Then:
\item
$X_N + Y_N \rightarrow_d c + Y$. \pause
\item
$X_n Y_n \rightarrow_d c Y$. \pause
\item
If $c \neq 0$, then $Y_n/ X_n \rightarrow_d Y /c$.
\pause
\item
Analogous versions apply for vector-valued random variables.
\end{wideitemize}
\end{frame}
\begin{frame}{Asymptotic Hypothesis Testing}
\begin{wideitemize}
\item
Recall that when $Y_i \sim \mathrm{N}(\mu,\sigma^2)$, we showed that the $t$-statistic $\hat{t} = \frac{\hat\mu - \mu_0}{\sigma / \sqrt{n}} \sim \mathrm{N}(0,1)$ under $H_0: \mu = \mu_0$.
\pause
\item
Thus, when $Y_i \sim \mathrm{N}(\mu,\sigma^2)$, we had that $Pr(|\hat t| > 1.96) = 0.05$ under the null.
\pause
\item
Now, suppose that $Y_i$ is not normally distributed and we don't know its variance.
\pause
\item
By CLT, $\sqrt{N} (\hat\mu - \mu_0) \rightarrow_d N(0,\sigma^2)$.\\
By CMT and LLN (as shown above), $\hat\sigma \rightarrow_p \sigma$.
\pause
\item
Thus, by Slutsky's lemma, $\hat{t} = \dfrac{\hat\mu - \mu_0}{ \hat\sigma /\sqrt{n} } \rightarrow_d N(0,1)$.
\pause
\item
Hence, asymptotically $Pr( |\hat{t}| > 1.96 ) \rightarrow 0.05$, even though $Y_i$ is not normal and $\hat\sigma$ is estimated! We can hypothesis test just like before.
\end{wideitemize}
\end{frame}
\begin{frame}{Asymptotic Confidence Intervals}
\begin{wideitemize}
\item
Similarly, when $Y_i$ was normal w/ $\sigma$ known, we showed the confidence interval $\hat\mu \pm 1.96 \sigma/\sqrt{N}$ contained the true $\mu$ 95\% of the time
\pause
\item
Analogously, when $Y_i$ is non-normal with unknown variance, $\hat\mu \pm 1.96 \hat\sigma/\sqrt{N}$ contains the true $\mu$ with probability approaching 95\% as $N$ grows large.
\end{wideitemize}
\end{frame}
\begin{frame}{Outline}
\textcolor{red!75!green!50!blue!25!gray}{1. Overview} $\checkmark$
\vspace{0.8cm}
\textcolor{red!75!green!50!blue!25!gray}{2. LLN, CLT, and CMT} $\checkmark$
\vspace{0.8cm}
3. Putting Asymptotics into Practice
\end{frame}
\begin{frame}{Example -- Oregon Health Insurance Experiment}
\begin{center}
\includegraphics[width = 0.9 \linewidth]{ohie-abstract}
\end{center}
\end{frame}
\begin{frame}{Sample Means for Depression Outcome}
\begin{tabular}{lll}
& Control Group & Treated Group \\
Mean & 0.329 & 0.306\\
SD & 0.470 & 0.461 \\
N & 10426 & 13315
\end{tabular}
\pause
\begin{wideitemize}
\item
Say we want a CI for the population mean in the control group
\pause
\item
We have $$\hat\mu \pm 1.96 \times \hat\sigma / \sqrt{N} = \pause{} 0.329 \pm 1.96 \times 0.470 / \sqrt{10426} = \pause{} [0.319, 0.338] $$
\pause
\item
What about for the treated group?
\pause
$$\hat\mu \pm 1.96 \times \hat\sigma / \sqrt{N} = \pause{} 0.306 \pm 1.96 \times 0.461 / \sqrt{13315} = \pause{} [0.298, 0.313] $$
\end{wideitemize}
\end{frame}
\begin{frame}{CIs for Treatment Effects in Experiments}
\begin{wideitemize}
\item
We showed previously that in an experiment, the average treatment effect is given by
$$\tau = E[Y_i(1) - Y_i(0)] = E[Y_i | D_i = 1] - E[Y_i | D_i = 0].$$
i.e. the difference in population means between the treated and control groups.
\pause
\item
How can we form confidence intervals (or test hypotheses) about the treatment effect?
\end{wideitemize}
\end{frame}
\begin{frame}{Mean and variance of the difference-in-means}
\begin{wideitemize}
\item
Let $\bar{Y}_1 = \frac{1}{N_1} \sum_{i: D_i = 1} Y_i $ be the sample mean for the treated group. \\
Let $\bar{Y}_0 = \frac{1}{N_0} \sum_{i: D_i = 0} Y_i $ be the sample mean for the control group.
\pause
\item
Since $\bar{Y}_1,\bar{Y}_0$ are each sample means, we have that \pause
\begin{align*}
& E[\bar{Y}_1] = \mu_1, \hspace{2cm} Var(\bar{Y}_1) = \sigma_1^2 / N_1 \\
& E[\bar{Y}_0] = \mu_0, \hspace{2cm} Var(\bar{Y_0}) = \sigma_0^2 / N_0
\end{align*}
\noindent where $\mu_d = E[Y_i \mid D_i=d]$ and $\sigma_d^2 = Var(Y_i \mid D_i = d)$.
\
\item
Let $\hat\tau= \bar{Y}_1 - \bar{Y}_0$. It follows that $E[\hat\tau] = \pause{}\mu_1 - \mu_0 = \tau$ and
\begin{align*}
Var( \hat\tau ) &= \pause{} \sigma_1^2 / N_1 + \sigma_0^2 / N_0 + 2 Cov(\bar{Y_1}, \bar{Y_0})\\
& = \pause{}\sigma_1^2 / N_1 + \sigma_0^2 / N_0
\end{align*}
\noindent where the fact that the samples are independent implies that $Cov(\bar{Y_1}, \bar{Y_0}) = 0$.
\end{wideitemize}
\end{frame}
\begin{frame}
\begin{wideitemize}
\item
We just showed that in an experiment $$E[\hat\tau] = \tau \text{ and } Var(\hat\tau) = \sigma_1^2/N_1 + \sigma_0^2 / N_0$$ where $\hat\tau$ is the difference in sample means btwn the treated/control groups
\item
If we knew that $\hat\tau$ was normally distributed (and we knew $\sigma_1,\sigma_0$), then we could construct CIs of the form \pause
$$ \hat\tau \pm 1.96 \sqrt{\sigma_1^2/N_1 + \sigma_0^2 / N_0} $$
\pause
\item
As with sample means, we do not know that $\hat\tau$ is normally distributed, but we can show that for $N$ large, it is \emph{approximately} normally distributed, which allows us to use CIs of the form
$$ \hat\tau \pm 1.96 \sqrt{\hat\sigma_1^2/N_1 + \hat\sigma_0^2 / N_0} ,$$
for $\hat\sigma_d^2$ the estimated conditional variance.
\end{wideitemize}
\end{frame}
%\pause\vspace{0.2cm}
%By the CLT,
%$$\left( \begin{array}{c}\sqrt{N_1} \left( \bar{Y}_1 - E[Y_i(1)] \right)\\
% \sqrt{N_0} \left( \bar{Y}_0 - E[Y_i(0)] \right)
%\end{array} \right) \rightarrow_d \mathrm{N}\left(\mathbf{0} , \left(\begin{array}{ll} Var(Y_i(1)) & 0 \\ 0 & Var(Y_i(0)) \end{array} \right) \right).$$
\begin{frame}{Showing Asymptotic Normality}
\begin{wideitemize}
\item
By the CLT, we have that $\sqrt{N_1} (\bar{Y_1} - \mu_1) \rightarrow_d \pause{} N(0,\sigma_1^2)$. \pause
\item
Note that $\frac{N_1}{N} = \frac{1}{N} \sum_i D_i \rightarrow_p \pause{} E[D_i]$ by the LLN.
\pause
\item
Hence, applying the continuous mapping theorem,
\begin{align*}
\sqrt{N}(\bar{Y}_1 - E[Y_i(1)]) &= \pause{} (1/\sqrt{N_1/N}) \cdot \sqrt{N_1} (\bar{Y}_1 - E[Y_i(1)])\\
&\rightarrow_d (1/\sqrt{E[D_i]}) \cdot \mathrm{N}(0,Var(Y_i(1))) \\
& = \mathrm{N}\left(0, \frac{1}{E[D_i]} Var(Y_i(1)) \right)
\end{align*}
\pause
\item
Applying similar steps for $\bar{Y}_0$, we obtain that \pause
$$\small \sqrt{N} \left( \begin{array}{c} \bar{Y}_1 - E[Y_i(1)] \\
\bar{Y}_0 - E[Y_i(0)]
\end{array} \right) \rightarrow_d \pause{} \mathrm{N}\left(0 , \left(\begin{array}{ll} \frac{1}{E[D_i]} Var(Y_i(1)) & 0 \\ 0 & \frac{1}{1-E[D_i]} Var(Y_i(0)) \end{array} \right) \right).$$
\end{wideitemize}
\end{frame}
\begin{frame}{Hypothesis Testing for Experiments (continued)}
\begin{wideitemize}
\item
We just showed that
$$\small \sqrt{N} \left( \begin{array}{c} \bar{Y}_1 - E[Y_i(1)] \\
\bar{Y}_0 - E[Y_i(0)]
\end{array} \right) \rightarrow_d \mathrm{N}\left(0 , \left(\begin{array}{ll} \frac{1}{E[D_i]} Var(Y_i(1)) & 0 \\ 0 & \frac{1}{1-E[D_i]} Var(Y_i(0)) \end{array} \right) \right).$$
\pause
\item
Applying the CMT,
$$\sqrt{N} (\bar{Y}_1 - \bar{Y_0} - E[Y_i(1) - Y_i(0)]) \rightarrow_d N(0 , \sigma^2),$$
\noindent where $\sigma^2 = \frac{1}{E[D_i]} Var(Y_i(1)) + \frac{1}{E[1-D_i]} Var(Y_i(0)) $
\pause
\item
We can thus form a 95\% confidence interval for $\tau = E[Y_i(1) - Y_i(0)]$,
$$\bar{Y}_1 - \bar{Y}_0 \pm 1.96 \hat\sigma / \sqrt{N},$$
\noindent where $\hat{\sigma}^2 = \frac{N}{N_1} \hat\sigma_1^2 + \frac{N}{N_0} \hat\sigma_0^2$, where $\hat{\sigma}^2_d$ is the sample variance for treatment group $d\in\{0,1\}$
\end{wideitemize}
\end{frame}
\begin{frame}{Sample Means for Depression Outcome (Again)}
\begin{tabular}{lll}
& Control Group & Treated Group \\
Mean & 0.329 & 0.306\\
SD & 0.470 & 0.461 \\
N & 10426 & 13315
\end{tabular}
\pause
\begin{wideitemize}
\item
Our point estimate of the treatment effect is $\hat\tau = \pause{} 0.306 - 0.329 = -0.023$.
\pause
\item
Our CI for the treatment effect is:
\pause
\begin{align*}
&\hat\tau \pm 1.96 \times \sqrt{ \frac{1}{N_1} \hat\sigma_1^2 + \frac{1}{N_0} \hat\sigma_0^2 } = \pause{} \\ &-0.023 \pm 1.96 \times \sqrt{ \frac{1}{13315} 0.461^2 + \frac{1}{10426} 0.470^2 } \\ &= \pause{} [-0.035, -0.001]
\end{align*}
\end{wideitemize}
\end{frame}
\begin{frame}{Hypothesis Testing under Unconfoundedness}
\begin{wideitemize}
\item
Recall that under unconfoundedness, $D_i \indep (Y_i(1),Y_i(0)) | X_i$, we have
$$ \underbrace{E[Y_i(1) - Y_i(0) | X_i =x]}_{CATE(x)} = E[Y_i | D_i = 1, X_i =x ] - E[Y_i | D_i = 0, X_i =x]$$
\noindent That is, within each value of $X_i$, it's as if we have an experiment.
\pause
\item
By the same logic as for experiments, we have that
$$\sqrt{N_x} (\bar{Y}_{1,x} - \bar{Y}_{0,x} - E[Y_i(1) - Y_i(0) | X_i = x]) \rightarrow_d N(0 , \sigma_x^2),$$
\noindent where $N_x = |i : X_i = x|$ and
$\sigma_x^2 = \frac{1}{E[D_i|X_i = x]} Var(Y_i(1) | X_i = x) + \frac{1}{E[1-D_i|X_i=x]} Var(Y_i(0)|X_i =x) $.
\pause
\item
So we can also do hyptothesis testing on $CATE(x)$ when $N_x$ is large.
\pause
\item
By averaging $CATE(x)$, we can do hypothesis testing / form CIs for $ATE$.
\end{wideitemize}
\end{frame}
\begin{frame}{The Challenge of Continuous $x$}
\begin{wideitemize}
\item
We've shown thus far how we can estimate $CATE(x)$ when the number of observations with $X_i=x$ is large.
\item
This works great when $X_i$ is binary (e.g. an indicator for college) or takes on a small number of discrete values (e.g. 50 states).
\pause
\item
But what about when $X_i$ is continuous?
\pause
\item
For example, if $X_i$ is income, then to estimate $CATE(50,351)$, the theory we have says we need a large number of treated and control units both with income \$50,351. In most datasets, we won't have very many people with exactly this income.
\pause
\item
We thus need a different way of estimating conditional means when $X_i$ is continuously distributed.
\pause
\item
The next part of the course will focus on achieving this task using linear regression as an approximation to the CEF.
\end{wideitemize}
\end{frame}
\end{document}
}