-
Notifications
You must be signed in to change notification settings - Fork 0
/
pokerNN.py
96 lines (67 loc) · 3.02 KB
/
pokerNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from create_feature_sets import create_feature_sets_and_labels
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf
import pickle
import numpy as np
import progressbar
n_nodes_hl1 = 1500
n_nodes_hl2 = 1500
n_nodes_hl3 = 1500
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
n_classes = 10
batch_size = 100
hm_epochs = 10
train_file = 'poker_hands_data/poker-hand-training-true.data'
test_file = 'poker_hands_data/poker-hand-testing.data'
train_x,train_y,test_x,test_y = create_feature_sets_and_labels(train_file,test_file)
def model(data):
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([len(train_x[0]), n_nodes_hl1])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases':tf.Variable(tf.random_normal([n_classes]))}
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.add(tf.matmul(l3, output_layer['weights']), output_layer['biases'])
return output
def train_neural_network(x):
prediction = model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) )
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
i=0
bar = progressbar.ProgressBar(max_value=len(train_x))
while i < len(train_x):
start = i
if(i+batch_size <= len(train_x)):
end = i+batch_size
else:
end = len(train_x)
batch_x = np.array(train_x[int(start):int(end)])
batch_y = np.array(train_y[int(start):int(end)])
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x,y: batch_y})
epoch_loss += c
i+=batch_size
if(i < len(train_x)):
bar.update(i)
print('epoch',epoch,'out of',hm_epochs,'loss:',epoch_loss)
saver.save(sess, "./model.ckpt")
correct = tf.equal(tf.arg_max(prediction,1),tf.arg_max(y,1))
accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print('accuracy:',accuracy.eval({x:test_x,y:test_y}))
if __name__ == '__main__':
train_neural_network(x)