-
Notifications
You must be signed in to change notification settings - Fork 0
/
lab09-op-MNIST_softmax_nn.py
81 lines (66 loc) · 2.92 KB
/
lab09-op-MNIST_softmax_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
###
# using Neural Network to train MNIST
# but it doesn't work well with deep & wide NN
# Because of the softmax
###
import tensorflow as tf
import matplotlib.pyplot as plt
import random
from tensorflow.examples.tutorials.mnist import input_data
# Check out https://www.tensorflow.org/get_started/mnist/beginners
# for more information about the mnist dataset
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
nb_classes = 10
# MNIST data image of shape 28 * 28 = 784
X = tf.placeholder(tf.float32, [None, 784])
# 0-9 digits recognition = 10 classes
Y = tf.placeholder(tf.float32, [None, nb_classes])
W1 = tf.Variable(tf.random_normal([784, 256]), name='weight1')
b1 = tf.Variable(tf.random_normal([256]), name='bias1')
layer1 = tf.nn.softmax(tf.matmul(X, W1) + b1)
W2 = tf.Variable(tf.random_normal([256, 256]), name='weight2')
b2 = tf.Variable(tf.random_normal([256]), name='bias2')
layer2 = tf.nn.softmax(tf.matmul(layer1, W2) + b2)
W3 = tf.Variable(tf.random_normal([256, nb_classes]), name='weight3')
b3 = tf.Variable(tf.random_normal([nb_classes]), name='bias3')
# Hypothesis
hypothesis = tf.nn.softmax(tf.matmul(layer2, W3) + b3)
# Cross entropy - cost/loss function
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
train = optimizer.minimize(cost)
# Test model
is_correct = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
## parameters
# one epoch = one forward pass and one backward pass of all the training examples
# batch size = the number of training examples in one forward/backward pass.
training_epochs = 15
batch_size = 100
# Launch graph
with tf.Session() as sess:
# Initialize Tensorflow variables
sess.run(tf.global_variables_initializer())
# Training cycle
print("Learning Start: ")
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(mnist.train.num_examples / batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
c, _ = sess.run([cost, train], feed_dict={X: batch_xs, Y: batch_ys})
avg_cost += c / total_batch
print('Epoch: ', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
print("Learning Finished!")
# Test the model using test sets
print("Accuracy: ", accuracy.eval(session=sess, feed_dict={X: mnist.test.images,
Y: mnist.test.labels}))
# Get one and predict
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(
tf.argmax(mnist.test.labels[r:r+1], 1)))
print("Prediction: ", sess.run(
tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r+1]}))
# plt.imshow(mnist.test.images[r:r+1].reshape(28, 28), cmap='Greys', interpolation='nearest')
# plt.show()