-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
137 lines (112 loc) · 5.37 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
Simple training loop; Boilerplate that could apply to any arbitrary neural network,
so nothing in this file really has anything to do with GPT specifically.
"""
import math
import logging
from tqdm import tqdm
import numpy as np
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data.dataloader import DataLoader
logger = logging.getLogger(__name__)
class TrainerConfig:
# optimization parameters
max_epochs = 10
batch_size = 64
learning_rate = 3e-4
betas = (0.9, 0.95)
grad_norm_clip = 1.0
weight_decay = 0.1 # only applied on matmul weights
# learning rate decay params: linear warmup followed by cosine decay to 10% of original
lr_decay = False
warmup_tokens = 375e6 # these two numbers come from the GPT-3 paper, but may not be good defaults elsewhere
final_tokens = 260e9 # (at what point we reach 10% of original LR)
# checkpoint settings
ckpt_path = None
num_workers = 0 # for DataLoader
writer = None
def __init__(self, **kwargs):
for k,v in kwargs.items():
setattr(self, k, v)
class Trainer:
def __init__(self, model, train_dataset, test_dataset, config):
self.model = model
self.train_dataset = train_dataset
self.test_dataset = test_dataset
self.config = config
# take over whatever gpus are on the system
self.device = 'cpu'
if torch.cuda.is_available():
self.device = torch.cuda.current_device()
self.model = torch.nn.DataParallel(self.model).to(self.device)
def save_checkpoint(self):
if self.config.ckpt_path is not None:
ckpt_model = self.model.module if hasattr(self.model, "module") else self.model
logger.info("saving %s", self.config.ckpt_path)
torch.save(ckpt_model.state_dict(), self.config.ckpt_path)
def train(self):
model, config = self.model, self.config
# create the optimizer
no_decay = ["bias", "LayerNorm.weight"]
params_decay = [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)]
params_nodecay = [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)]
optim_groups = [
{"params": params_decay, "weight_decay": config.weight_decay},
{"params": params_nodecay, "weight_decay": 0.0},
]
optimizer = optim.AdamW(optim_groups, lr=config.learning_rate, betas=config.betas)
step = 0
def run_epoch(split):
nonlocal step
is_train = split == 'train'
model.train(is_train)
data = self.train_dataset if is_train else self.test_dataset
loader = DataLoader(data, batch_size=config.batch_size, num_workers=config.num_workers)
losses = []
pbar = tqdm(enumerate(loader), total=len(loader)) if is_train else enumerate(loader)
for it, (x, y) in pbar:
# place data on the correct device
x = x.to(self.device)
y = y.to(self.device)
# forward the model
with torch.set_grad_enabled(is_train):
logits, loss = model(x, y)
loss = loss.mean() # collapse all losses if they are scattered on multiple gpus
losses.append(loss.item())
if is_train:
# backprop and update the parameters
model.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_norm_clip)
optimizer.step()
# decay the learning rate based on our progress
if config.lr_decay:
self.tokens += (y >= 0).sum() # number of tokens processed this step (i.e. label is not -100)
if self.tokens < config.warmup_tokens:
# linear warmup
lr_mult = float(self.tokens) / float(max(1, config.warmup_tokens))
else:
# cosine learning rate decay
progress = float(self.tokens - config.warmup_tokens) / float(max(1, config.final_tokens - config.warmup_tokens))
lr_mult = max(0.1, 0.5 * (1.0 + math.cos(math.pi * progress)))
lr = config.learning_rate * lr_mult
for param_group in optimizer.param_groups:
param_group['lr'] = lr
else:
lr = config.learning_rate
# report progress
pbar.set_description(f"epoch {epoch+1} iter {it}: train loss {loss.item():.5f}. lr {lr:e}")
if config.writer is not None:
config.writer.add_scalar('train/loss', loss.item(), step)
config.writer.add_scalar('train/lr', lr, step)
step += 1
if not is_train:
logger.info("test loss: %f", np.mean(losses))
self.tokens = 0 # counter used for learning rate decay
for epoch in range(config.max_epochs):
run_epoch('train')
if self.test_dataset is not None:
run_epoch('test')
self.save_checkpoint()