-
Notifications
You must be signed in to change notification settings - Fork 21
/
utils.py
140 lines (116 loc) · 5.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
#import matplotlib.pyplot as plt
import time
import os
import copy
import torch.nn.functional as F
from PIL import Image
def train_model_snapshot(model, criterion, lr, dataloaders, dataset_sizes, device, num_cycles, num_epochs_per_cycle):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
best_loss = 1000000.0
model_w_arr = []
for cycle in range(num_cycles):
#initialize optimizer and scheduler each cycle
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, 10*len(dataloaders['train']))
for epoch in range(num_epochs_per_cycle):
print('Cycle {}: Epoch {}/{}'.format(cycle, epoch, num_epochs_per_cycle - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, inputs_area, inputs_mask, labels in dataloaders[phase]:
inputs = inputs.to(device)
inputs_mask = inputs_mask.to(device)
inputs_area = inputs_area.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs, inputs_mask)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
scheduler.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_loss < best_loss:
best_loss = epoch_loss
best_model_wts = copy.deepcopy(model.state_dict())
print()
# deep copy snapshot
model_w_arr.append(copy.deepcopy(model.state_dict()))
ensemble_loss = 0.0
#predict on validation using snapshots
for inputs, inputs_area, inputs_mask, labels in dataloaders['val']:
inputs = inputs.to(device)
inputs_mask = inputs_mask.to(device)
inputs_area = inputs_area.to(device)
labels = labels.to(device)
# forward
# track history if only in train
prob = torch.zeros((inputs.shape[0], 7), dtype = torch.float32).to(device)
for weights in model_w_arr:
model.load_state_dict(weights)
model.eval()
outputs = model(inputs, inputs_mask)
prob += F.softmax(outputs, dim = 1)
prob /= num_cycles
loss = F.nll_loss(torch.log(prob), labels)
ensemble_loss += loss.item() * inputs.size(0)
ensemble_loss /= dataset_sizes['val']
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Ensemble Loss : {:4f}, Best val Loss: {:4f}'.format(ensemble_loss, best_loss))
# load snapshot model weights and combine them in array
model_arr =[]
for weights in model_w_arr:
model.load_state_dict(weights)
model_arr.append(model)
return model_arr, ensemble_loss, best_loss
def test(models_arr, loader, device):
res = np.zeros((1402, 7), dtype = np.float32)
for model in models_arr:
model.eval()
res_arr = []
for inputs, inputs_area, inputs_mask, _ in loader:
inputs = inputs.to(device)
inputs_mask = inputs_mask.to(device)
inputs_area = inputs_area.to(device)
# forward
with torch.set_grad_enabled(False):
outputs = F.softmax(model(inputs, inputs_mask), dim = 1)
res_arr.append(outputs.detach().cpu().numpy())
res_arr = np.concatenate(res_arr, axis = 0)
res += res_arr
return res / len(models_arr)
def load_file(fp):
"""Takes a PosixPath object or string filepath
and returns np array"""
return np.array(Image.open(fp.__str__()))