Kedro's command line interface (CLI) is used to give commands to Kedro via a terminal shell (such as the terminal app on macOS, or cmd.exe or PowerShell on Windows). You need to use the CLI to set up a new Kedro project, and to run it.
If you are using macOS or Linux, you can set up your shell to autocomplete kedro
commands. If you don't know the type of shell you are using, first type the following:
echo $0
If you are using Bash (click to expand)
Add the following to your
~/.bashrc
(or just run it on the command line):
eval "$(_KEDRO_COMPLETE=source kedro)"
If you are using Z shell (ZSh) (click to expand)
Add the following to
~/.zshrc
:
eval "$(_KEDRO_COMPLETE=source_zsh kedro)"
If you are using Fish (click to expand)
Add the following to
~/.config/fish/completions/foo-bar.fish
:
eval (env _KEDRO_COMPLETE=source_fish kedro)
You can invoke the Kedro CLI as a Python module:
python -m kedro
Here is a list of Kedro CLI commands, as a shortcut to the descriptions below. Project-specific commands are called from within a project directory and apply to that particular project. Global commands can be run anywhere and don't apply to any particular project:
-
Global Kedro commands
-
Project-specific Kedro commands
kedro catalog list
kedro catalog resolve
kedro catalog rank
kedro catalog create
kedro ipython
kedro jupyter lab
kedro jupyter notebook
kedro micropkg package <pipeline_name>
(deprecated from version 0.20.0)kedro micropkg pull <package_name>
(deprecated from version 0.20.0)kedro package
kedro pipeline create <pipeline_name>
kedro pipeline delete <pipeline_name>
kedro registry describe <pipeline_name>
kedro registry list
kedro run
The following are Kedro commands that apply globally and can be run from any directory location.
You only need to use one of those given below (e.g. specify `kedro -V` **OR** `kedro --version`).
kedro
kedro -h
kedro --help
kedro -V
kedro --version
kedro info
Returns output similar to the following, depending on the version of Kedro used and plugins installed.
_ _
| | _____ __| |_ __ ___
| |/ / _ \/ _` | '__/ _ \
| < __/ (_| | | | (_) |
|_|\_\___|\__,_|_| \___/
v0.19.8
Kedro is a Python framework for
creating reproducible, maintainable
and modular data science code.
Installed plugins:
kedro_viz: 9.2.0 (hooks:global,line_magic)
kedro new
All project related CLI commands should be run from the project’s root directory.
Kedro's command line interface (CLI) allows you to associate a set of commands and dependencies with a target, which you can then execute from inside the project directory.
The commands a project supports are specified on the framework side. If you want to customise any of the Kedro commands you can do this either by adding a file called cli.py
or by injecting commands into it via the plugin
framework. Find the template for the cli.py
file below.
Click to expand
"""Command line tools for manipulating a Kedro project.
Intended to be invoked via `kedro`."""
import click
from kedro.framework.cli.project import (
ASYNC_ARG_HELP,
CONFIG_FILE_HELP,
CONF_SOURCE_HELP,
FROM_INPUTS_HELP,
FROM_NODES_HELP,
LOAD_VERSION_HELP,
NODE_ARG_HELP,
PARAMS_ARG_HELP,
PIPELINE_ARG_HELP,
RUNNER_ARG_HELP,
TAG_ARG_HELP,
TO_NODES_HELP,
TO_OUTPUTS_HELP,
)
from kedro.framework.cli.utils import (
CONTEXT_SETTINGS,
_config_file_callback,
_split_params,
_split_load_versions,
env_option,
split_string,
split_node_names,
)
from kedro.framework.session import KedroSession
from kedro.utils import load_obj
@click.group(context_settings=CONTEXT_SETTINGS, name=__file__)
def cli():
"""Command line tools for manipulating a Kedro project."""
@cli.command()
@click.option(
"--from-inputs", type=str, default="", help=FROM_INPUTS_HELP, callback=split_string
)
@click.option(
"--to-outputs", type=str, default="", help=TO_OUTPUTS_HELP, callback=split_string
)
@click.option(
"--from-nodes", type=str, default="", help=FROM_NODES_HELP, callback=split_node_names
)
@click.option(
"--to-nodes", type=str, default="", help=TO_NODES_HELP, callback=split_node_names
)
@click.option("--nodes", "-n", "node_names", type=str, multiple=True, help=NODE_ARG_HELP)
@click.option(
"--runner", "-r", type=str, default=None, multiple=False, help=RUNNER_ARG_HELP
)
@click.option("--async", "is_async", is_flag=True, multiple=False, help=ASYNC_ARG_HELP)
@env_option
@click.option("--tags", "-t", type=str, multiple=True, help=TAG_ARG_HELP)
@click.option(
"--load-versions",
"-lv",
type=str,
multiple=True,
help=LOAD_VERSION_HELP,
callback=_split_load_versions,
)
@click.option("--pipeline", "-p", type=str, default=None, help=PIPELINE_ARG_HELP)
@click.option(
"--config",
"-c",
type=click.Path(exists=True, dir_okay=False, resolve_path=True),
help=CONFIG_FILE_HELP,
callback=_config_file_callback,
)
@click.option(
"--conf-source",
type=click.Path(exists=True, file_okay=False, resolve_path=True),
help=CONF_SOURCE_HELP,
)
@click.option(
"--params",
type=click.UNPROCESSED,
default="",
help=PARAMS_ARG_HELP,
callback=_split_params,
)
def run(
tags,
env,
runner,
is_async,
node_names,
to_nodes,
from_nodes,
from_inputs,
to_outputs,
load_versions,
pipeline,
config,
conf_source,
params,
):
"""Run the pipeline."""
runner = load_obj(runner or "SequentialRunner", "kedro.runner")
tags = tuple(tags)
node_names = tuple(node_names)
with KedroSession.create(
env=env, conf_source=conf_source, extra_params=params
) as session:
session.run(
tags=tags,
runner=runner(is_async=is_async),
node_names=node_names,
from_nodes=from_nodes,
to_nodes=to_nodes,
from_inputs=from_inputs,
to_outputs=to_outputs,
load_versions=load_versions,
pipeline_name=pipeline,
)
The following runs pip
to install all package dependencies specified in requirements.txt
:
pip install -r requirements.txt
For further information, see the documentation on installing project-specific dependencies.
Call the run()
method of the KedroSession
defined in kedro.framework.session
.
kedro run
KedroContext
can be extended in run.py
(src/<package_name>/run.py
). In order to use the extended KedroContext
, you need to set context_path
in the pyproject.toml
configuration file.
Kedro has options to modify pipeline runs. Below is a list of CLI arguments supported out of the box. Note that the names inside angular brackets (<>
) are placeholders, and you should replace these values with the
the names of relevant nodes, datasets, envs, etc. in your project.
CLI command | Description |
---|---|
kedro run --from-inputs=<dataset_name1>,<dataset_name2> |
A list of dataset names which should be used as a starting point |
kedro run --to-outputs=<dataset_name1>,<dataset_name2> |
A list of dataset names which should be used as an end point |
kedro run --from-nodes=<node_name1>,<node_name2> |
A list of node names which should be used as a starting point |
kedro run --to-nodes=<node_name1>,<node_name1> |
A list of node names which should be used as an end point |
kedro run --nodes=<node_name1>,<node_name2> |
Run only nodes with specified names. |
kedro run --runner=<runner_name> |
Run the pipeline with a specific runner |
kedro run --async |
Load and save node inputs and outputs asynchronously with threads |
kedro run --env=<env_name> |
Run the pipeline in the env_name environment. Defaults to local if not provided |
kedro run --tags=<tag_name1>,<tag_name2> |
Run only nodes which have any of these tags attached. |
kedro run --load-versions=<dataset_name>:YYYY-MM-DDThh.mm.ss.sssZ |
Specify particular dataset versions (timestamp) for loading. |
kedro run --pipeline=<pipeline_name> |
Run the whole pipeline by its name |
kedro run --namespace=<namespace> |
Run only nodes with the specified namespace |
kedro run --config=<config_file_name>.yml |
Specify all command line options in a named YAML configuration file |
kedro run --conf-source=<path_to_config_directory> |
Specify a new source directory for configuration files |
kedro run --conf-source=<path_to_compressed file> |
Only possible when using the OmegaConfigLoader . Specify a compressed config file in zip or tar format. |
kedro run --params=<param_key1>=<value1>,<param_key2>=<value2> |
Does a parametrised run with {"param_key1": "value1", "param_key2": 2} . These will take precedence over parameters defined in the conf directory. Additionally, dot (. ) syntax can be used to address nested keys like parent.child:value |
You can also combine these options together, so the following command runs all the nodes from split
to predict
and report
:
kedro run --from-nodes=split --to-nodes=predict,report
This functionality is extended to the kedro run --config=config.yml
command, which allows you to specify run commands in a configuration file.
A parameterised run is best used for dynamic parameters, i.e. running the same pipeline with different inputs, for static parameters that do not change we recommend following the Kedro project setup methodology.
The following packages your application as one .whl
file within the dist/
folder of your project. It packages the project configuration separately in a tar.gz
file:
kedro package
See the Python documentation for further information about packaging.
Since Kedro 0.17.7 you can pull a micro-package into your Kedro project as follows:
_This command is deprecated and will be removed from Kedro in version 0.20.0._
kedro micropkg pull <link-to-micro-package-sdist-file>
The above command will take the bundled .tar.gz
file and do the following:
- Place source code in
src/<package_name>/pipelines/<pipeline_name>
- Place parameters in
conf/base/parameters_<pipeline_name>.yml
- Pull out tests and place in
src/tests/pipelines/<pipeline_name>
kedro micropkg pull
works with PyPI, local and cloud storage:
- PyPI:
kedro micropkg pull <my-pipeline>
with<my-pipeline>
being a package on PyPI - Local storage:
kedro micropkg pull dist/<my-pipeline>-0.1.tar.gz
- Cloud storage:
kedro micropkg pull s3://<my-bucket>/<my-pipeline>-0.1.tar.gz
Create a new modular pipeline in your project
kedro pipeline create <pipeline_name>
The following command packages all the files related to a micro-package, e.g. a modular pipeline, into a Python source distribution file:
_This command is deprecated and will be removed from Kedro in version 0.20.0._
kedro micropkg package <package_module_path>
Further information is available in the micro-packaging documentation.
The following command pulls all the files related to a micro-package, e.g. a modular pipeline, from either PyPI or a storage location of a Python source distribution file.
_This command is deprecated and will be removed from Kedro in version 0.20.0._
kedro micropkg pull <package_name> (or path to a sdist file)
Further information is available in the micro-packaging documentation.
The following command deletes all the files related to a modular pipeline in your Kedro project.
kedro pipeline delete <pipeline_name>
Further information is available in the micro-packaging documentation.
kedro registry describe <pipeline_name>
The output includes all the nodes in the pipeline. If no pipeline name is provided, this command returns all nodes in the __default__
pipeline.
kedro registry list
kedro catalog list
The results include datasets that are/aren't used by a specific pipeline.
The command also accepts an optional --pipeline
argument that allows you to specify the pipeline name(s) (comma-separated values) in order to filter datasets used only by those named pipeline(s). For example:
kedro catalog list --pipeline=ds,de
kedro catalog resolve
This command resolves dataset factories in the catalog file with any explicit entries in the pipeline. The output includes datasets explicitly mentioned in your catalog files and any datasets mentioned in the project's pipelines that match a dataset factory.
kedro catalog rank
The output includes a list of any dataset factories in the catalog, ranked by the priority on which they are matched against.
The following command creates a Data Catalog YAML configuration file with MemoryDataset
datasets for each dataset in a registered pipeline, if it is missing from the DataCatalog
.
kedro catalog create --pipeline=<pipeline_name>
The command also accepts an optional --env
argument that allows you to specify a configuration environment (defaults to base
).
The command creates the following file: <conf_root>/<env>/catalog_<pipeline_name>.yml
To start a Jupyter Notebook:
kedro jupyter notebook
To start JupyterLab:
kedro jupyter lab
To start an IPython shell:
kedro ipython
The Kedro IPython extension makes the following variables available in your IPython or Jupyter session:
catalog
(type {py:class}~kedro.io.DataCatalog
): Data Catalog instance that contains all defined datasets; this is a shortcut forcontext.catalog
context
(type {py:class}~kedro.framework.context.KedroContext
): Kedro project context that provides access to Kedro's library componentspipelines
(typedict[str, Pipeline]
): Pipelines defined in your pipeline registrysession
(type {py:class}~kedro.framework.session.session.KedroSession
): Kedro session that orchestrates a pipeline run
To reload these variables (e.g. if you updated catalog.yml
) use the %reload_kedro
line magic, which can also be used to see the error message if any of the variables above are undefined.