This repository has been archived by the owner on Jan 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
ISR_RPM_Measure.ino
196 lines (153 loc) · 6.21 KB
/
ISR_RPM_Measure.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/****************************************************************************************************************************
ISR_RPM_Measure.ino
For Arduino and Adadruit AVR 328(P) and 32u4 boards
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/TimerInterrupt
Licensed under MIT license
Now we can use these new 16 ISR-based timers, while consuming only 1 hardware Timer.
Their independently-selected, maximum interval is practically unlimited (limited only by unsigned long miliseconds)
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
Notes:
Special design is necessary to share data between interrupt code and the rest of your program.
Variables usually need to be "volatile" types. Volatile tells the compiler to avoid optimizations that assume
variable can not spontaneously change. Because your function may change variables while your program is using them,
the compiler needs this hint. But volatile alone is often not enough.
When accessing shared variables, usually interrupts must be disabled. Even with volatile,
if the interrupt changes a multi-byte variable between a sequence of instructions, it can be read incorrectly.
If your data is multiple variables, such as an array and a count, usually interrupts need to be disabled
or the entire sequence of your code which accesses the data.
*****************************************************************************************************************************/
/* RPM Measuring uses high frequency hardware timer 1Hz == 1ms) to measure the time from of one rotation, in ms
then convert to RPM. One rotation is detected by reading the state of a magnetic REED SW or IR LED Sensor
Asssuming LOW is active.
For example: Max speed is 600RPM => 10 RPS => minimum 100ms a rotation. We'll use 80ms for debouncing
If the time between active state is less than 8ms => consider noise.
RPM = 60000 / (rotation time in ms)
We use interrupt to detect whenever the SW is active, set a flag
then use timer to count the time between active state
*/
// These define's must be placed at the beginning before #include "TimerInterrupt.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG 0
#define _TIMERINTERRUPT_LOGLEVEL_ 0
#if ( defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || \
defined(ARDUINO_AVR_UNO) || defined(ARDUINO_AVR_NANO) || defined(ARDUINO_AVR_MINI) || defined(ARDUINO_AVR_ETHERNET) || \
defined(ARDUINO_AVR_FIO) || defined(ARDUINO_AVR_BT) || defined(ARDUINO_AVR_LILYPAD) || defined(ARDUINO_AVR_PRO) || \
defined(ARDUINO_AVR_NG) || defined(ARDUINO_AVR_UNO_WIFI_DEV_ED) || defined(ARDUINO_AVR_DUEMILANOVE) || defined(ARDUINO_AVR_FEATHER328P) || \
defined(ARDUINO_AVR_METRO) || defined(ARDUINO_AVR_PROTRINKET5) || defined(ARDUINO_AVR_PROTRINKET3) || defined(ARDUINO_AVR_PROTRINKET5FTDI) || \
defined(ARDUINO_AVR_PROTRINKET3FTDI) )
#define USE_TIMER_1 true
#warning Using Timer1
#else
#define USE_TIMER_3 true
#warning Using Timer3
#endif
#include "TimerInterrupt_Generic.h"
#if !defined(LED_BUILTIN)
#define LED_BUILTIN 13
#endif
unsigned int interruptPin = 2;
#define TIMER_INTERVAL_MS 1
#define DEBOUNCING_INTERVAL_MS 80
#define LOCAL_DEBUG 1
volatile unsigned long rotationTime = 0;
float RPM = 0.00;
float avgRPM = 0.00;
volatile int debounceCounter;
#define KAVG 100
volatile bool activeState = false;
void detectRotation(void)
{
activeState = true;
}
void TimerHandler()
{
if ( activeState )
{
// Reset to prepare for next round of interrupt
activeState = false;
if (debounceCounter >= DEBOUNCING_INTERVAL_MS / TIMER_INTERVAL_MS )
{
//min time between pulses has passed
RPM = (float) ( 60000.0f / ( rotationTime * TIMER_INTERVAL_MS ) );
avgRPM = ( 2 * avgRPM + RPM) / 3,
#if (TIMER_INTERRUPT_DEBUG > 1)
Serial.print("RPM = ");
Serial.print(avgRPM);
Serial.print(", rotationTime ms = ");
Serial.println(rotationTime * TIMER_INTERVAL_MS);
#endif
rotationTime = 0;
debounceCounter = 0;
}
else
debounceCounter++;
}
else
{
debounceCounter++;
}
if (rotationTime >= 5000)
{
// If idle, set RPM to 0, don't increase rotationTime
RPM = 0;
#if (TIMER_INTERRUPT_DEBUG > 1)
Serial.print("RPM = ");
Serial.print(RPM);
Serial.print(", rotationTime = ");
Serial.println(rotationTime);
#endif
rotationTime = 0;
}
else
{
rotationTime++;
}
}
void setup()
{
Serial.begin(115200);
while (!Serial && millis() < 5000);
delay(500);
Serial.print(F("\nStarting ISR_RPM_Measure on "));
Serial.println(BOARD_TYPE);
Serial.println(TIMER_INTERRUPT_VERSION);
Serial.println(TIMER_INTERRUPT_GENERIC_VERSION);
Serial.print(F("CPU Frequency = "));
Serial.print(F_CPU / 1000000);
Serial.println(F(" MHz"));
pinMode(LED_BUILTIN, OUTPUT);
pinMode(interruptPin, INPUT_PULLUP);
// Timer0 is used for micros(), millis(), delay(), etc and can't be used
// Select Timer 1-2 for UNO, 1-5 for MEGA, 1,3,4 for 16u4/32u4
// Timer 2 is 8-bit timer, only for higher frequency
// Timer 4 of 16u4 and 32u4 is 8/10-bit timer, only for higher frequency
#if USE_TIMER_1
ITimer1.init();
// Using ATmega328 used in UNO => 16MHz CPU clock ,
if (ITimer1.attachInterruptInterval(TIMER_INTERVAL_MS, TimerHandler))
{
Serial.print(F("Starting ITimer1 OK, millis() = "));
Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer1. Select another freq. or timer"));
#elif USE_TIMER_3
ITimer3.init();
if (ITimer3.attachInterruptInterval(TIMER_INTERVAL_MS, TimerHandler))
{
Serial.print(F("Starting ITimer3 OK, millis() = "));
Serial.println(millis());
}
else
Serial.println(F("Can't set ITimer3. Select another freq. or timer"));
#endif
// Assumming the interruptPin will go LOW
attachInterrupt(digitalPinToInterrupt(interruptPin), detectRotation, FALLING);
}
void loop()
{
}