forked from showlab/X-Adapter
-
Notifications
You must be signed in to change notification settings - Fork 8
/
inference.py
124 lines (113 loc) · 3.7 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import datetime
import argparse
from scripts.inference_controlnet import inference_controlnet
from scripts.inference_lora import inference_lora
from scripts.inference_ctrlnet_tile import inference_ctrlnet_tile
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Inference setting for X-Adapter.")
parser.add_argument(
"--plugin_type",
type=str, help='lora or controlnet', default="controlnet"
)
parser.add_argument(
"--controlnet_condition_scale_list",
nargs='+', help='controlnet_scale', default=[1.0, 2.0]
)
parser.add_argument(
"--adapter_guidance_start_list",
nargs='+', help='start of 2nd stage', default=[0.6, 0.65, 0.7, 0.75, 0.8]
)
parser.add_argument(
"--adapter_condition_scale_list",
nargs='+', help='X-Adapter scale', default=[0.8, 1.0, 1.2]
)
parser.add_argument(
"--base_path",
type=str, help='path to base model', default="runwayml/stable-diffusion-v1-5"
)
parser.add_argument(
"--sdxl_path",
type=str, help='path to SDXL', default="stabilityai/stable-diffusion-xl-base-1.0"
)
parser.add_argument(
"--path_vae_sdxl",
type=str, help='path to SDXL vae', default="madebyollin/sdxl-vae-fp16-fix"
)
parser.add_argument(
"--adapter_checkpoint",
type=str, help='path to X-Adapter', default="./checkpoint/X-Adapter/X_Adapter_v1.bin"
)
parser.add_argument(
"--condition_type",
type=str, help='condition type', default="canny"
)
parser.add_argument(
"--controlnet_canny_path",
type=str, help='path to canny controlnet', default="lllyasviel/sd-controlnet-canny"
)
parser.add_argument(
"--controlnet_depth_path",
type=str, help='path to depth controlnet', default="lllyasviel/sd-controlnet-depth"
)
parser.add_argument(
"--controlnet_tile_path",
type=str, help='path to controlnet tile', default="lllyasviel/control_v11f1e_sd15_tile"
)
parser.add_argument(
"--lora_model_path",
type=str, help='path to lora', default="./checkpoint/lora/MoXinV1.safetensors"
)
parser.add_argument(
"--prompt",
type=str, help='SDXL prompt', default=None, required=True
)
parser.add_argument(
"--prompt_sd1_5",
type=str, help='SD1.5 prompt', default=None
)
parser.add_argument(
"--negative_prompt",
type=str, default=None
)
parser.add_argument(
"--iter_num",
type=int, default=1
)
parser.add_argument(
"--input_image_path",
type=str, default="./controlnet_test_image/CuteCat.jpeg"
)
parser.add_argument(
"--num_inference_steps",
type=int, default=50
)
parser.add_argument(
"--guidance_scale",
type=float, default=7.5
)
parser.add_argument(
"--seed",
type=int, default=1674753452
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
return args
def run_inference(args):
current_datetime = datetime.datetime.now()
save_path = f"./result/{current_datetime}_lora" if args.plugin_type == "lora" else f"./result/{current_datetime}_controlnet"
os.makedirs(save_path)
args.save_path = save_path
if args.plugin_type == "controlnet":
inference_controlnet(args)
elif args.plugin_type == "controlnet_tile":
inference_ctrlnet_tile(args)
elif args.plugin_type == "lora":
inference_lora(args)
else:
raise NotImplementedError("not implemented yet")
if __name__ == "__main__":
args = parse_args()
run_inference(args)