forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SoftMax.cpp
653 lines (535 loc) · 21.6 KB
/
SoftMax.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
#include <ATen/ATen.h>
#include <ATen/Config.h>
#include <ATen/NativeFunctions.h>
#include <ATen/SparseTensorUtils.h>
#include <ATen/Parallel.h>
#include <ATen/NamedTensorUtils.h>
#include <map>
namespace at {
namespace native {
namespace {
int64_t get_nvalues(const IntArrayRef& sizes, int64_t sparse_dim) {
/* Return the number of entries in the dense part of a sparse tensor.
`sizes` is a vector of sparse tensor dimensions.
`sparse_dim` is the dimension of the sparse part of a sparse tensor.
*/
auto dim = sizes.size();
int64_t nvalues = 1;
for (auto i=sparse_dim; i<dim; i++) {
nvalues *= sizes[i];
}
return nvalues;
}
std::vector<int64_t> get_offsets(const Tensor& indices, const IntArrayRef& sizes, const int64_t dim) {
/*
Given the indices of a sparse tensor, return a vector of offsets
for the entries in the equivalent dense tensor:
If
offsets = get_offsets(A._indices(), A.sizes(), -1)
data = A.to_dense().resize((nnz,))
then
data[offsets[n]] == A._values()[n]
`indices` must be a contiguous 2-d tensor with int64_t entries.
`sizes` must be a vector with at least ndim entries.
`dim` is an integer. When >= 0 and < ndim, the indices of all
entries in the given dimension will be mapped to the index of the
first entry before computing the offset. Otherwise, the value is
ignored.
For example, consider a sparse tensor
11 ** ** 14 15
** 22 ** 24 **
with
indices = [[0, 0, 0, 1, 1],
[0, 3, 4, 1, 3]]
then
get_offsets(indices, (2, 5), -1) -> [0, 3, 4, 6, 8]
get_offsets(indices, (2, 5), 0) -> [0, 3, 4, 1, 3]
get_offsets(indices, (2, 5), 1) -> [0, 0, 0, 5, 5]
*/
auto ndim = indices.size(0);
auto nnz = indices.size(1);
std::vector<int64_t> offsets(nnz);
std::vector<int64_t> strides(ndim, 1);
auto indices_accessor = indices.accessor<int64_t, 2>();
if (ndim > 1) {
for (int64_t i=ndim - 2; i >= 0; i--) {
strides[i] = strides[i + 1] * sizes[i + 1];
}
}
for (int64_t i=0; i < nnz; i++) {
int64_t acc = 0;
for (int64_t j=0; j < ndim; j++) {
auto indices_row = indices_accessor[j];
auto stride = strides[j];
if (j != dim) {
acc += stride * indices_row[i];
}
}
offsets[i] = acc;
}
return offsets;
}
std::vector<std::vector<int64_t>> get_pools(const Tensor& indices, const IntArrayRef& sizes, const int64_t dim) {
/*
Return pools of indices that align with the given dimension.
Parameters:
`indices` - sparse tensor indices
`sizes` - sparse tensor dimensions
`dim` - given dimension
Returns:
`pools` - a ragged array of indices
A pool is defined as a list of indices (of sparse tensor values)
that participate in the same softmax computation:
- pools[i] intersection with pools[j] is empty iff i != j
- union of all pools is set(range(nnz))
- X.values[k], k in pools[i], does not affect the result of softmax(X)[n], n in pools[j], iff i != j
*/
std::vector<std::vector<int64_t>> pools;
auto ndim = indices.size(0);
auto nnz = indices.size(1);
std::vector<int64_t> strides(ndim, 1);
auto indices_accessor = indices.accessor<int64_t, 2>();
if (ndim > 1) {
for (int64_t i=ndim - 2; i >= 0; i--) {
strides[i] = strides[i + 1] * (i + 1 == dim? 1 : sizes[i + 1]);
}
}
for (int64_t i=0; i < nnz; i++) {
int64_t pool_index = 0;
for (int64_t j=0; j < ndim; j++) {
if (j != dim) {
auto indices_row = indices_accessor[j];
auto stride = strides[j];
pool_index += stride * indices_row[i];
}
}
while (pool_index >= pools.size()) {
pools.emplace_back(); // create empty pool
}
pools[pool_index].push_back(i);
}
return pools;
}
template <typename scalar_t, bool LogSoftMax>
void cpu_sparse_coo_softmax(Tensor output, const Tensor& input, const int64_t dim) {
/*
See test/test_sparse.py:test_softmax:sparse_softmax for the Python
prototype of the sparse softmax algorithm that this implementation
is based on.
Derivation of the sparse softmax algorithm with an example
----------------------------------------------------------
Consider the following 2-D sparse tensor with 0-D dense part as an
example, denote it by X:
11 ** ** 14 15
** 22 ** 24 **
where `**` represent unspecified entries. The COO sparse tensor
representation of X is:
indices = [[0, 1, 0, 1, 0],
[0, 1, 3, 3, 4]]
values = [11, 22, 14, 24, 15]
that after coalescing becomes
indices = [[0, 0, 0, 1, 1],
[0, 3, 4, 1, 3]]
values = [11, 14, 15, 22, 24]
The softmax of X along the given dimension d is defined as
S_d[i, j] = exp(X[i, j]) / sum(exp(X[I_d[k]]), k=0..X.shape[d]-1)
where the index tuple I_d[k] is defined as
I_0[k] = k, j
I_1[k] = i, k
For sparse tensors, the unspecified entries are skipped in the
softmax sum of exponents so that the result will be sparse tensor
with the same indices as the input. Mathematically, this
corresponds to the case where the unspecified entries are
interpreted as negative infinities rather than zeros.
To minimize the defects from numerical evaluation of exponents
with very large or small arguments, the softmax implementation
uses the following a numerically stable definition:
S_d[i, j] = exp(X[i, j] - maxX_d) / sum(exp(X[I_d[k]] - maxX_d), k=0...X.shape[d]-1)
where
maxX_d = max(X[I_d[k]], k=0...X.shape[d]-1)
is the maximum tensor along the direction d (it has dimensionality
`maxX_d.ndim = X.ndim - 1`).
For the example sparse tensor X, we have:
S_0._indices() == S_1._indices() == X._indices()
maxX_0 = [11, 22, -inf, 24, 15]
maxX_1 = [15, 24]
S_0._values() = [exp(11 - maxX_0[0]) / exp(11 - maxX_0[0]),
exp(14 - maxX_0[3]) / (exp(14 - maxX_0[3]) + exp(24 - maxX_0[3])),
exp(15 - maxX_0[4]) / exp(15 - maxX_0[4]),
exp(22 - maxX_0[1]) / exp(22 - maxX_0[1]),
exp(24 - maxX_0[3]) / (exp(14 - maxX_0[3]) + exp(24 - maxX_0[3]))]
= [1, exp(-10)/(exp(-10) + 1), 1, 1, 1/(exp(-10) + 1)]
(note that `maxX_0[2] == -inf` not used to obtain S_0)
S_1._values() = [exp(11 - maxX_1[0]) / (exp(11 - maxX_1[0]) + exp(14 - maxX_1[0]) + exp(15 - maxX_1[0])),
exp(14 - maxX_1[0]) / (exp(11 - maxX_1[0]) + exp(14 - maxX_1[0]) + exp(15 - maxX_1[0])),
exp(15 - maxX_1[0]) / (exp(11 - maxX_1[0]) + exp(14 - maxX_1[0]) + exp(15 - maxX_1[0])),
exp(22 - maxX_1[1]) / (exp(22 - maxX_1[1]) + exp(24 - maxX_1[1])),
exp(24 - maxX_1[1]) / (exp(22 - maxX_1[1]) + exp(24 - maxX_1[1]))]
= [exp(-4) / (exp(-4) + exp(-1) + 1),
exp(-1) / (exp(-4) + exp(-1) + 1),
1 / (exp(-4) + exp(-1) + 1),
exp(-2) / (exp(-2) + 1),
1 / (exp(-2) + 1)]
To obtain the above via the for-loop over
`nnz(=len(X._values()))`, we introduce the indices mapping `pool`
as follows:
indices = X._indices()
for i in range(nnz):
for j in range(nnz):
if indices[d, i] == indices[d, j]:
assert pool_d[i] == pool_d[j]
else:
assert pool_d[i] != pool_d[j]
that is, the entries with values indices i and j are in the same
pool iff their locations in the grid of tensor indices align with
the direction along which the softmax is calculated. The `pool`
mapping maps the X._values() indices to the corresponding pool
index.
To save memory and processor resources, we pre-compute the entries
of maxX tensor and the sums of exponents as follows:
mx_d = [max(values[i] for i in range(nnz) if pool_0[i] == k) for k in pool_d]
exp_sum_d = [sum(exp(values[i] - mx_d[k]) for i in range(nnz) if pool_d[i] == k) for k in pool_d]
For example, if
pool_0 = [0, 1, 2, 3, 1]
pool_1 = [0, 0, 0, 1, 1]
then
mx_0 = [11, 24, 15, 22]
mx_1 = [15, 24]
exp_sum_0 = [1, (exp(-10) + 1), 1, 1]
exp_sum_1 = [(exp(-4) + exp(-1) + 1), (exp(-2) + 1)]
and
S_0._values() = [exp(11 - mx_0[pool_0[0]]) / exp_sum_0[pool_0[0]]
exp(14 - mx_0[pool_0[1]]) / exp_sum_0[pool_0[1]]
exp(15 - mx_0[pool_0[2]]) / exp_sum_0[pool_0[2]]
exp(22 - mx_0[pool_0[3]]) / exp_sum_0[pool_0[3]]
exp(24 - mx_0[pool_0[4]]) / exp_sum_0[pool_0[4]]
or in general,
S_d._values() = [exp(values[i] - mx_d[pool_d[i]]) / exp_sum_d[pool_d[i] for i in range(nnz)]
The above algorithm can be easily extended for cases with
non-scalar dense part of the sparse tensor where all scalar
operations become element-wise tensor operations.
The implementation below has more optimizations such as that
collect pool indices for enabling concurrency, minimize the calls
to exp functions as well as reuse of softmax implementation for
log_softmax.
*/
auto sparse_dim = input.sparse_dim();
auto indices = input._indices().contiguous();
auto values = input._values().contiguous();
auto out_values = output._values();
auto out_indices = output._indices();
out_values.resize_as_(values);
out_indices.resize_as_(indices);
out_indices.copy_(indices);
if (dim >= sparse_dim) {
if (LogSoftMax) {
auto new_values = log_softmax_cpu(values, dim - sparse_dim + 1, false);
out_values.copy_(new_values);
} else {
auto new_values = softmax_cpu(values, dim - sparse_dim + 1, false);
out_values.copy_(new_values);
}
return;
}
auto nnz = values.size(0);
auto sizes = input.sizes();
auto nvalues = get_nvalues(sizes, sparse_dim);
/* Prepare accessors */
auto values_2 = values.view({nnz, nvalues});
auto values_accessor = values_2.accessor<scalar_t, 2>();
auto out_values_2 = out_values.view({nnz, nvalues});
auto out_values_accessor = out_values_2.accessor<scalar_t, 2>();
/* Compute independent pools of indices */
auto pools = get_pools(indices, sizes, dim);
int64_t grain_size = 1;
parallel_for(0, pools.size(), grain_size, [&](int64_t begin, int64_t end) {
for (auto p = begin; p < end; p++) {
auto pool_indices = pools[p];
// Skip empty pools
if (pool_indices.size() == 0)
continue;
/* Prepare scratch space */
std::vector<scalar_t> mx_row(nvalues, -std::numeric_limits<scalar_t>::infinity());
std::vector<scalar_t> exp_sums_row(nvalues, 0);
/* Compute mx */
for (int64_t i : pool_indices) {
auto values_row = values_accessor[i];
for (int64_t j=0; j < nvalues; j++) {
mx_row[j] = std::max(mx_row[j], values_row[j]);
}
}
/* Apply exp to (v - mx) and sum the results */
for (int64_t i : pool_indices) {
auto values_row = values_accessor[i];
auto out_values_row = out_values_accessor[i];
for (int64_t j=0; j < nvalues; j++) {
auto v = std::exp(values_row[j] - mx_row[j]);
if (!LogSoftMax) {
out_values_row[j] = v;
}
exp_sums_row[j] += v;
}
}
for (int64_t j=0; j < nvalues; j++) {
if (LogSoftMax) {
mx_row[j] += std::log(exp_sums_row[j]);
} else {
exp_sums_row[j] = 1.0 / exp_sums_row[j];
}
}
/* Normalize with the sum of exponents */
for (int64_t i : pool_indices) {
auto values_row = values_accessor[i];
auto out_values_row = out_values_accessor[i];
for (int64_t j=0; j < nvalues; j++) {
if (LogSoftMax) {
out_values_row[j] = values_row[j] - mx_row[j];
} else {
out_values_row[j] *= exp_sums_row[j];
}
}
}
}
});
}
template <typename scalar_t, bool LogSoftMax>
void cpu_sparse_coo_softmax_backward(Tensor& grad_input, const Tensor& grad, const Tensor& output, const int64_t dim) {
/*
If LogSoftMax == false, then
gI_i = sum_j d<output_j>/d<input_i> * grad_j = sum_j output_i * (1[i==j] - output_j) * grad_j
= output_i * (grad_i - sum_j output_j * grad_j)
else
gI_i = (1-exp(output_i)) * grad_i - sum_{j} 1[i!=j] * exp(output_i) * grad_j
= grad_i - exp(output_i) * sum_j grad_j.
where
i, j in range(shape[dim])
x_i = x[..., i_dim, ...]
output.sparse_dim() == grad.sparse_dim()
*/
auto sparse_dim = output.sparse_dim();
auto sizes = output.sizes().vec();
auto grad_indices = grad._indices().contiguous();
auto grad_values = grad._values().contiguous();
auto out_indices = output._indices().contiguous();
auto out_values = output._values().contiguous();
auto values = grad_input._values();
auto indices = grad_input._indices();
auto out_nnz = out_values.size(0);
auto grad_nnz = grad_values.size(0);
values.resize_as_(out_values);
values.zero_();
indices.resize_as_(out_indices);
indices.copy_(out_indices);
auto out_offsets = get_offsets(out_indices, sizes, -1);
auto grad_offsets = get_offsets(grad_indices, sizes, -1);
if (dim >= sparse_dim) {
for(int64_t i=0; i<out_nnz; i++) {
Tensor unused;
auto low = std::lower_bound(grad_offsets.begin(), grad_offsets.end(), out_offsets[i]);
auto j = low - grad_offsets.begin();
if (j < grad_nnz && out_offsets[i] == grad_offsets[j]) {
if (LogSoftMax) {
auto r = log_softmax_backward_cpu(grad_values[j], out_values[i], dim - sparse_dim, unused);
values[i].copy_(r);
} else {
auto r = softmax_backward_cpu(grad_values[j], out_values[i], dim - sparse_dim, unused);
values[i].copy_(r);
}
}
}
return;
}
auto nnz = values.size(0);
auto nvalues = get_nvalues(sizes, sparse_dim);
auto values_2 = values.view({nnz, nvalues});
auto values_accessor = values_2.accessor<scalar_t, 2>();
auto out_values_2 = out_values.view({out_nnz, nvalues});
auto out_values_accessor = out_values_2.accessor<scalar_t, 2>();
auto grad_values_2 = grad_values.view({grad_nnz, nvalues});
auto grad_values_accessor = grad_values_2.accessor<scalar_t, 2>();
/* Compute independent pools of indices */
auto pools = get_pools(out_indices, sizes, dim);
int64_t grain_size = 1;
parallel_for(0, pools.size(), grain_size, [&](int64_t begin, int64_t end) {
for (auto p = begin; p < end; p++) {
auto pool_indices = pools[p];
// Skip empty pools
if (pool_indices.size() == 0)
continue;
std::vector<scalar_t> tmp_row(nvalues, 0);
/* Compute tmp = - sum_j output_j * grad_j */
for (int64_t i : pool_indices) {
auto out_values_row = out_values_accessor[i];
auto values_row = values_accessor[i];
auto low = std::lower_bound(grad_offsets.begin(), grad_offsets.end(), out_offsets[i]);
auto j = low - grad_offsets.begin();
if (j < grad_nnz && (out_offsets[i] == grad_offsets[j])) {
auto grad_values_row = grad_values_accessor[j];
for (int64_t k=0; k<nvalues; k++) {
if (LogSoftMax) {
tmp_row[k] -= grad_values_row[k];
} else {
tmp_row[k] -= out_values_row[k] * grad_values_row[k];
}
}
}
}
/* Compute grad_input = output * (grad + tmp)*/
for (int64_t i : pool_indices) {
auto out_values_row = out_values_accessor[i];
auto values_row = values_accessor[i];
auto low = std::lower_bound(grad_offsets.begin(), grad_offsets.end(), out_offsets[i]);
auto j = low - grad_offsets.begin();
if (j < grad_nnz && (out_offsets[i] == grad_offsets[j])) {
auto grad_values_row = grad_values_accessor[j];
for (int64_t k=0; k<nvalues; k++) {
if (LogSoftMax) {
values_row[k] = grad_values_row[k] + std::exp(out_values_row[k]) * tmp_row[k];
} else {
values_row[k] = out_values_row[k] * (grad_values_row[k] + tmp_row[k]);
}
}
} else {
for (int64_t k=0; k<nvalues; k++) {
if (LogSoftMax) {
values_row[k] = std::exp(out_values_row[k]) * tmp_row[k];
} else {
values_row[k] = out_values_row[k] * (tmp_row[k]);
}
}
}
}
}
});
}
} // namespace
Tensor softmax_sparse_cpu(const Tensor& input_, const int64_t dim_, const bool half_to_float) {
TORCH_INTERNAL_ASSERT(input_.is_sparse());
TORCH_CHECK(!half_to_float, "softmax with half to float conversion is not supported on CPU");
auto input = input_.coalesce();
Tensor output = at::native::empty_like(input);
if (input.numel() == 0) {
return output;
}
TORCH_CHECK(dim_ >= 0 && dim_ < input.dim(),
"dim must be non-negative and less than input dimensions");
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "softmax", [&] {
cpu_sparse_coo_softmax<scalar_t, false>(output, input, dim_);
});
return output;
}
Tensor log_softmax_sparse_cpu(const Tensor& input_, const int64_t dim_, const bool half_to_float) {
TORCH_INTERNAL_ASSERT(input_.is_sparse());
TORCH_CHECK(!half_to_float, "log_softmax with half to float conversion is not supported on CPU");
auto input = input_.coalesce();
Tensor output = at::native::empty_like(input);
if (input.numel() == 0) {
return output;
}
TORCH_CHECK(dim_ >= 0 && dim_ < input.dim(),
"dim must be non-negative and less than input dimensions");
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "log_softmax", [&] {
cpu_sparse_coo_softmax<scalar_t, true>(output, input, dim_);
});
return output;
}
Tensor softmax_backward_sparse_cpu(
const Tensor& grad_,
const Tensor& output_,
int64_t dim_,
const Tensor& input_) {
TensorArg grad_arg{grad_, "grad", 1}, output_arg{output_, "output", 2};
checkSameSize("softmax_backward", grad_arg, output_arg);
int64_t dim = maybe_wrap_dim(dim_, grad_.dim());
auto grad = grad_.coalesce();
auto output = output_.coalesce();
Tensor grad_input = at::native::empty_like(output);
if (output.numel() == 0) {
return grad_input;
}
TORCH_CHECK(
dim >= 0 && dim < grad.dim(),
"dim must be non-negative and less than input dimensions");
TORCH_CHECK(
grad.sparse_dim() == output.sparse_dim(),
"grad and output sparse dimensions must be equal");
AT_DISPATCH_FLOATING_TYPES(grad.scalar_type(), "softmax_backward", [&] {
cpu_sparse_coo_softmax_backward<scalar_t, false>(grad_input, grad, output, dim);
});
return grad_input;
}
Tensor log_softmax_backward_sparse_cpu(
const Tensor& grad_,
const Tensor& output_,
int64_t dim_,
const Tensor& input_) {
TensorArg grad_arg{grad_, "grad", 1}, output_arg{output_, "output", 2};
checkSameSize("log_softmax_backward", grad_arg, output_arg);
int64_t dim = maybe_wrap_dim(dim_, grad_.dim());
auto grad = grad_.coalesce();
auto output = output_.coalesce();
Tensor grad_input = at::native::empty_like(output);
if (output.numel() == 0) {
return grad_input;
}
TORCH_CHECK(
dim >= 0 && dim < grad.dim(),
"dim must be non-negative and less than input dimensions");
TORCH_CHECK(
grad.sparse_dim() == output.sparse_dim(),
"grad and output sparse dimensions must be equal");
AT_DISPATCH_FLOATING_TYPES(grad.scalar_type(), "softmax_backward", [&] {
cpu_sparse_coo_softmax_backward<scalar_t, true>(grad_input, grad, output, dim);
});
return grad_input;
}
Tensor _sparse_softmax(const Tensor& input_, const int64_t dim_) {
auto result = [&]() {
NoNamesGuard guard;
return at::_sparse_softmax(input_, dim_, false);
}();
namedinference::propagate_names(result, input_);
return result;
}
Tensor _sparse_softmax(const Tensor& input_, const int64_t dim_, c10::optional<ScalarType> dtype) {
auto result = [&]() {
NoNamesGuard guard;
if (input_.is_cuda() && input_.scalar_type() == ScalarType::Half && dtype == ScalarType::Float){
return at::_sparse_softmax(input_, dim_, true);
} else {
Tensor converted = dtype.has_value() ? input_.toType(dtype.value()) : input_;
return at::_sparse_softmax(converted, dim_, false);
}
}();
namedinference::propagate_names(result, input_);
return result;
}
Tensor _sparse_softmax(const Tensor& self, Dimname dim, optional<ScalarType> dtype) {
return at::_sparse_softmax(self, dimname_to_position(self, dim), dtype);
}
Tensor _sparse_log_softmax(const Tensor& input_, const int64_t dim_) {
auto result = [&]() {
NoNamesGuard guard;
return at::_sparse_log_softmax(input_, dim_, false);
}();
namedinference::propagate_names(result, input_);
return result;
}
Tensor _sparse_log_softmax(const Tensor& input_, const int64_t dim_, c10::optional<ScalarType> dtype) {
auto result = [&]() {
NoNamesGuard guard;
if (input_.is_cuda() && input_.scalar_type() == ScalarType::Half && dtype == ScalarType::Float){
return at::_sparse_log_softmax(input_, dim_, true);
} else {
Tensor converted = dtype.has_value() ? input_.toType(dtype.value()) : input_;
return at::_sparse_log_softmax(converted, dim_, false);
}
}();
namedinference::propagate_names(result, input_);
return result;
}
Tensor _sparse_log_softmax(const Tensor& self, Dimname dim, optional<ScalarType> dtype) {
return at::_sparse_log_softmax(self, dimname_to_position(self, dim), dtype);
}
}
}