-
Notifications
You must be signed in to change notification settings - Fork 443
/
mnist.py
205 lines (168 loc) · 7.79 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright 2022 The Kubeflow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import logging
import os
import hypertune
from torchvision import datasets, transforms
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
WORLD_SIZE = int(os.environ.get("WORLD_SIZE", 1))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
msg = "Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}".format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item())
logging.info(msg)
niter = epoch * len(train_loader) + batch_idx
def test(args, model, device, test_loader, epoch, hpt):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction="sum").item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
test_accuracy = float(correct) / len(test_loader.dataset)
logging.info("{{metricName: accuracy, metricValue: {:.4f}}};{{metricName: loss, metricValue: {:.4f}}}\n".format(
test_accuracy, test_loss))
if args.logger == "hypertune":
hpt.report_hyperparameter_tuning_metric(
hyperparameter_metric_tag='loss',
metric_value=test_loss,
global_step=epoch)
hpt.report_hyperparameter_tuning_metric(
hyperparameter_metric_tag='accuracy',
metric_value=test_accuracy,
global_step=epoch)
def should_distribute():
return dist.is_available() and WORLD_SIZE > 1
def is_distributed():
return dist.is_available() and dist.is_initialized()
def main():
# Training settings
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
parser.add_argument("--batch-size", type=int, default=64, metavar="N",
help="input batch size for training (default: 64)")
parser.add_argument("--test-batch-size", type=int, default=1000, metavar="N",
help="input batch size for testing (default: 1000)")
parser.add_argument("--epochs", type=int, default=10, metavar="N",
help="number of epochs to train (default: 10)")
parser.add_argument("--lr", type=float, default=0.01, metavar="LR",
help="learning rate (default: 0.01)")
parser.add_argument("--momentum", type=float, default=0.5, metavar="M",
help="SGD momentum (default: 0.5)")
parser.add_argument("--no-cuda", action="store_true", default=False,
help="disables CUDA training")
parser.add_argument("--seed", type=int, default=1, metavar="S",
help="random seed (default: 1)")
parser.add_argument("--log-interval", type=int, default=10, metavar="N",
help="how many batches to wait before logging training status")
parser.add_argument("--log-path", type=str, default="",
help="Path to save logs. Print to StdOut if log-path is not set")
parser.add_argument("--save-model", action="store_true", default=False,
help="For Saving the current Model")
parser.add_argument("--logger", type=str, choices=["standard", "hypertune"],
help="Logger", default="standard")
if dist.is_available():
parser.add_argument("--backend", type=str, help="Distributed backend",
choices=[dist.Backend.GLOO, dist.Backend.NCCL, dist.Backend.MPI],
default=dist.Backend.GLOO)
args = parser.parse_args()
# Use this format (%Y-%m-%dT%H:%M:%SZ) to record timestamp of the metrics.
# If log_path is empty print log to StdOut, otherwise print log to the file.
if args.log_path == "" or args.logger == "hypertune":
logging.basicConfig(
format="%(asctime)s %(levelname)-8s %(message)s",
datefmt="%Y-%m-%dT%H:%M:%SZ",
level=logging.DEBUG)
else:
logging.basicConfig(
format="%(asctime)s %(levelname)-8s %(message)s",
datefmt="%Y-%m-%dT%H:%M:%SZ",
level=logging.DEBUG,
filename=args.log_path)
if args.logger == "hypertune" and args.log_path != "":
os.environ['CLOUD_ML_HP_METRIC_FILE'] = args.log_path
# For JSON logging
hpt = hypertune.HyperTune()
use_cuda = not args.no_cuda and torch.cuda.is_available()
if use_cuda:
print("Using CUDA")
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
if should_distribute():
print("Using distributed PyTorch with {} backend".format(args.backend))
dist.init_process_group(backend=args.backend)
kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.FashionMNIST("./data",
train=True,
download=True,
transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.FashionMNIST("./data",
train=False,
transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=args.test_batch_size, shuffle=False, **kwargs)
model = Net().to(device)
if is_distributed():
Distributor = nn.parallel.DistributedDataParallel if use_cuda \
else nn.parallel.DistributedDataParallelCPU
model = Distributor(model)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader, epoch, hpt)
if (args.save_model):
torch.save(model.state_dict(), "mnist_cnn.pt")
if __name__ == "__main__":
main()