-
Notifications
You must be signed in to change notification settings - Fork 443
/
median-stop.yaml
64 lines (64 loc) · 1.71 KB
/
median-stop.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
# This is example with median stopping early stopping rule.
# It has bad feasible space for learning rate to show more early stopped Trials.
apiVersion: kubeflow.org/v1beta1
kind: Experiment
metadata:
namespace: kubeflow
name: median-stop
spec:
objective:
type: maximize
goal: 0.99
objectiveMetricName: Validation-accuracy
additionalMetricNames:
- Train-accuracy
algorithm:
algorithmName: random
earlyStopping:
algorithmName: medianstop
algorithmSettings:
- name: min_trials_required
value: "1"
- name: start_step
value: "2"
parallelTrialCount: 2
maxTrialCount: 15
maxFailedTrialCount: 3
parameters:
- name: lr
parameterType: double
feasibleSpace:
min: "0.01"
max: "0.5"
- name: num-epochs
parameterType: int
feasibleSpace:
min: "3"
max: "4"
trialTemplate:
retain: true
primaryContainerName: training-container
trialParameters:
- name: learningRate
description: Learning rate for the training model
reference: lr
- name: numberEpochs
description: Number of epochs to train the model
reference: num-epochs
trialSpec:
apiVersion: batch/v1
kind: Job
spec:
template:
spec:
containers:
- name: training-container
image: docker.io/kubeflowkatib/mxnet-mnist:v0.15.0
command:
- "python3"
- "/opt/mxnet-mnist/mnist.py"
- "--batch-size=64"
- "--lr=${trialParameters.learningRate}"
- "--num-epochs=${trialParameters.numberEpochs}"
restartPolicy: Never