forked from hehongjie/Amazing-Semantic-Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
210 lines (181 loc) · 10.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""
The file defines the training process.
@Author: Yang Lu
@Github: https://github.com/luyanger1799
@Project: https://github.com/luyanger1799/amazing-semantic-segmentation
"""
from utils.data_generator import ImageDataGenerator
from utils.helpers import get_dataset_info, check_related_path
from utils.callbacks import LearningRateScheduler
from utils.optimizers import *
from utils.losses import *
from utils.learning_rate import *
from utils.metrics import MeanIoU
from utils import utils
from builders import builder
import tensorflow as tf
import argparse
import os
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser()
parser.add_argument('--model', help='Choose the semantic segmentation methods.', type=str, required=True)
parser.add_argument('--base_model', help='Choose the backbone model.', type=str, default=None)
parser.add_argument('--dataset', help='The path of the dataset.', type=str, default='CamVid')
parser.add_argument('--loss', help='The loss function for traing.', type=str, default=None,
choices=['ce', 'focal_loss', 'miou_loss', 'self_balanced_focal_loss'])
parser.add_argument('--num_classes', help='The number of classes to be segmented.', type=int, default=32)
parser.add_argument('--random_crop', help='Whether to randomly crop the image.', type=str2bool, default=False)
parser.add_argument('--crop_height', help='The height to crop the image.', type=int, default=256)
parser.add_argument('--crop_width', help='The width to crop the image.', type=int, default=256)
parser.add_argument('--batch_size', help='The training batch size.', type=int, default=5)
parser.add_argument('--valid_batch_size', help='The validation batch size.', type=int, default=1)
parser.add_argument('--num_epochs', help='The number of epochs to train for.', type=int, default=100)
parser.add_argument('--initial_epoch', help='The initial epoch of training.', type=int, default=0)
parser.add_argument('--h_flip', help='Whether to randomly flip the image horizontally.', type=str2bool, default=False)
parser.add_argument('--v_flip', help='Whether to randomly flip the image vertically.', type=str2bool, default=False)
parser.add_argument('--brightness', help='Randomly change the brightness (list).', type=float, default=None, nargs='+')
parser.add_argument('--rotation', help='The angle to randomly rotate the image.', type=float, default=0.)
parser.add_argument('--zoom_range', help='The times for zooming the image.', type=float, default=0., nargs='+')
parser.add_argument('--channel_shift', help='The channel shift range.', type=float, default=0.)
parser.add_argument('--data_aug_rate', help='The rate of data augmentation.', type=float, default=0.)
parser.add_argument('--checkpoint_freq', help='How often to save a checkpoint.', type=int, default=1)
parser.add_argument('--validation_freq', help='How often to perform validation.', type=int, default=1)
parser.add_argument('--num_valid_images', help='The number of images used for validation.', type=int, default=20)
parser.add_argument('--data_shuffle', help='Whether to shuffle the data.', type=str2bool, default=True)
parser.add_argument('--random_seed', help='The random shuffle seed.', type=int, default=None)
parser.add_argument('--weights', help='The path of weights to be loaded.', type=str, default=None)
parser.add_argument('--steps_per_epoch', help='The training steps of each epoch', type=int, default=None)
parser.add_argument('--lr_scheduler', help='The strategy to schedule learning rate.', type=str, default='cosine_decay',
choices=['step_decay', 'poly_decay', 'cosine_decay'])
parser.add_argument('--lr_warmup', help='Whether to use lr warm up.', type=bool, default=False)
parser.add_argument('--learning_rate', help='The initial learning rate.', type=float, default=3e-4)
parser.add_argument('--optimizer', help='The optimizer for training.', type=str, default='adam',
choices=['sgd', 'adam', 'nadam', 'adamw', 'nadamw', 'sgdw'])
args = parser.parse_args()
# check related paths
paths = check_related_path(os.getcwd())
# get image and label file names for training and validation
train_image_names, train_label_names, valid_image_names, valid_label_names, _, _ = get_dataset_info(args.dataset)
# build the model
net, base_model = builder(args.num_classes, (args.crop_height, args.crop_width), args.model, args.base_model)
# summary
net.summary()
# load weights
if args.weights is not None:
print('Loading the weights...')
net.load_weights(args.weights)
# chose loss
losses = {'ce': categorical_crossentropy_with_logits,
'focal_loss': focal_loss(),
'miou_loss': miou_loss(num_classes=args.num_classes),
'self_balanced_focal_loss': self_balanced_focal_loss()}
loss = losses[args.loss] if args.loss is not None else categorical_crossentropy_with_logits
# chose optimizer
total_iterations = len(train_image_names) * args.num_epochs // args.batch_size
wd_dict = utils.get_weight_decays(net)
ordered_values = []
weight_decays = utils.fill_dict_in_order(wd_dict, ordered_values)
optimizers = {'adam': tf.keras.optimizers.Adam(learning_rate=args.learning_rate),
'nadam': tf.keras.optimizers.Nadam(learning_rate=args.learning_rate),
'sgd': tf.keras.optimizers.SGD(learning_rate=args.learning_rate, momentum=0.99),
'adamw': AdamW(learning_rate=args.learning_rate, batch_size=args.batch_size,
total_iterations=total_iterations),
'nadamw': NadamW(learning_rate=args.learning_rate, batch_size=args.batch_size,
total_iterations=total_iterations),
'sgdw': SGDW(learning_rate=args.learning_rate, momentum=0.99, batch_size=args.batch_size,
total_iterations=total_iterations)}
# lr schedule strategy
if args.lr_warmup and args.num_epochs - 5 <= 0:
raise ValueError('num_epochs must be larger than 5 if lr warm up is used.')
lr_decays = {'step_decay': step_decay(args.learning_rate, args.num_epochs - 5 if args.lr_warmup else args.num_epochs,
warmup=args.lr_warmup),
'poly_decay': poly_decay(args.learning_rate, args.num_epochs - 5 if args.lr_warmup else args.num_epochs,
warmup=args.lr_warmup),
'cosine_decay': cosine_decay(args.num_epochs - 5 if args.lr_warmup else args.num_epochs,
args.learning_rate, warmup=args.lr_warmup)}
lr_decay = lr_decays[args.lr_scheduler]
# training and validation steps
steps_per_epoch = len(train_image_names) // args.batch_size if not args.steps_per_epoch else args.steps_per_epoch
validation_steps = args.num_valid_images // args.valid_batch_size
# compile the model
net.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=args.learning_rate),
loss=loss,
metrics=[MeanIoU(args.num_classes)])
# data generator
# data augmentation setting
train_gen = ImageDataGenerator(random_crop=args.random_crop,
rotation_range=args.rotation,
brightness_range=args.brightness,
zoom_range=args.zoom_range,
channel_shift_range=args.channel_shift,
horizontal_flip=args.v_flip,
vertical_flip=args.v_flip)
valid_gen = ImageDataGenerator()
train_generator = train_gen.flow(images_list=train_image_names,
labels_list=train_label_names,
num_classes=args.num_classes,
batch_size=args.batch_size,
target_size=(args.crop_height, args.crop_width),
shuffle=args.data_shuffle,
seed=args.random_seed,
data_aug_rate=args.data_aug_rate)
valid_generator = valid_gen.flow(images_list=valid_image_names,
labels_list=valid_label_names,
num_classes=args.num_classes,
batch_size=args.valid_batch_size,
target_size=(args.crop_height, args.crop_width))
# callbacks setting
# checkpoint setting
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(
filepath=os.path.join(paths['checkpoints_path'],
'{model}_based_on_{base}_'.format(model=args.model, base=base_model) +
'miou_{val_mean_io_u:04f}_' + 'ep_{epoch:02d}.h5'),
save_best_only=True, period=args.checkpoint_freq, monitor='val_mean_io_u', mode='max')
# tensorboard setting
tensorboard = tf.keras.callbacks.TensorBoard(log_dir=paths['logs_path'])
# learning rate scheduler setting
learning_rate_scheduler = LearningRateScheduler(lr_decay, args.learning_rate, args.lr_warmup, steps_per_epoch,
verbose=1)
callbacks = [model_checkpoint, tensorboard, learning_rate_scheduler]
# begin training
print("\n***** Begin training *****")
print("Dataset -->", args.dataset)
print("Num Images -->", len(train_image_names))
print("Model -->", args.model)
print("Base Model -->", base_model)
print("Crop Height -->", args.crop_height)
print("Crop Width -->", args.crop_width)
print("Num Epochs -->", args.num_epochs)
print("Initial Epoch -->", args.initial_epoch)
print("Batch Size -->", args.batch_size)
print("Num Classes -->", args.num_classes)
print("Data Augmentation:")
print("\tData Augmentation Rate -->", args.data_aug_rate)
print("\tVertical Flip -->", args.v_flip)
print("\tHorizontal Flip -->", args.h_flip)
print("\tBrightness Alteration -->", args.brightness)
print("\tRotation -->", args.rotation)
print("\tZoom -->", args.zoom_range)
print("\tChannel Shift -->", args.channel_shift)
print("")
# training...
net.fit_generator(train_generator,
steps_per_epoch=steps_per_epoch,
epochs=args.num_epochs,
callbacks=callbacks,
validation_data=valid_generator,
validation_steps=validation_steps,
validation_freq=args.validation_freq,
max_queue_size=10,
workers=os.cpu_count(),
use_multiprocessing=False,
initial_epoch=args.initial_epoch)
# save weights
net.save(filepath=os.path.join(
paths['weights_path'], '{model}_based_on_{base_model}.h5'.format(model=args.model, base_model=base_model)))