forked from HNUSystemsLab/ZBTree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
n_alc.cpp
600 lines (549 loc) · 19.1 KB
/
n_alc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#include "n_alc.h"
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/select.h>
#include <unistd.h>
#include <fcntl.h>
#include <iostream>
#include <string>
#include <string.h>
#include <thread>
#include <fstream>
#include <mutex>
#define EADR
#define HEAP_PATH "/mnt/pmem/zbtree/data"
/**************************** N_ALC *****************************************/
//global id variable, shared among every thread's local allocator
//std::atomic<uint32_t> ndecision_id[2];
std::atomic<uint32_t> global_id(0);
std::mutex shit_mutex;
static const size_t mmap_start = 0x50000000ULL;
std::atomic<size_t> atm_pos(0);
N_alc::N_alc(size_t fixed_size){
alc_id = global_id.fetch_add(1);
//std::cout<<"alc id is"<<alc_id<<std::endl;
std::string local_name = HEAP_PATH + std::to_string(alc_id);
if(test_exist(local_name.c_str()))
{
#ifndef RECOVERY
std::cout<<"pmem file exist!"<<std::endl;
exit(1);
#else
create_pool(local_name.c_str(), fixed_size);
#endif
}
else
{
create_pool(local_name.c_str(), fixed_size);
init();
}
//std::cout<<"init allocator"<<std::endl;
}
N_alc::~N_alc(){
if(alc_id == 0)
{
std::cout<<"end address "<<(void*)end_address<<std::endl;
std::cout<<"start address "<<start_address<<std::endl;
}
//shit_mutex.lock();
//std::cout<<"alc id "<<alc_id<<" exit "<<std::endl;
//pmem_unmap(start_address, pool_len);
//shit_mutex.unlock();
}
bool N_alc::test_exist(const char *pmem_name){
std::ifstream f1(pmem_name);
if(f1.good())
return true;
return false;
}
void N_alc::create_pool(const char* name, size_t pool_size){
int fd = -1;
std::string heap_name;
if(name == nullptr){
heap_name = "/mnt/pmem/nvmpool";
}
else
heap_name = name;
pool_len = pool_size;
if ((fd = open(heap_name.c_str(), O_RDWR | O_CREAT, 0666)) < 0){
std::cerr<<"create pmem file failed"<<std::endl;
exit(1);
}
if(posix_fallocate(fd, 0, pool_len)!=0){
std::cout<<"posix failed"<<std::endl;
}
size_t local_mmap_start = mmap_start + pool_len * alc_id;
//start_address = pmem_map_file(heap_name.c_str(), pool_size, PMEM_FILE_CREATE, 0666, &pool_len, nullptr);
start_address = mmap((void*)local_mmap_start, pool_len, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, fd, 0); //last parameter alter the start address value
if((size_t)start_address != local_mmap_start)
{
std::cout<<"start address is "<<start_address<<std::endl;
}
}
void N_alc::init(){
//initialize the basic metadata of allocator
//stroe meta data in first 1kb region
end_address = reinterpret_cast<void*>((size_t)start_address + 1024);
page_id[0] = 0;
page_id[1] = 0;
decision_id[1] = 0;
decision_id[0] = 0;
get_more_chunk(4, nfree_list, 0);
get_more_chunk(4, nlog_list, 1);
//get_more_chunk(16, log_list);
//std::cout<<"end address is"<<end_address<<std::endl;
/*for(int i=0; i<free_list.size(); i++)
*/
}
void N_alc::recover_init(clht_t* fast_hash, size_t& anchor, int thread_num){
//fast recovery method, without pleaf init
// #ifdef RECOVERY
// // void * recover_start = start_address;
// // size_t* dummy_array = (size_t*)(recover_start + 64);
// // if(dummy_array[0] != 0)
// // {
// // std::cout<<"get anchor !"<<std::endl;
// // anchor = dummy_array[0];
// // }
// // void * recover_end = reinterpret_cast<void*>((size_t)recover_start + pool_len);
// // recover_start += 1024;
// // //first, collect every block and rebuild thread local hash map
// // while(recover_start < start_address + pool_len)
// // {
// // Base_Meta* one_header = (Base_Meta*)recover_start;
// // if(one_header->block_type == 0)
// // {
// // break;
// // }
// // else if(one_header->block_type == 1)//tree_block
// // {
// // nfree_list[one_header->block_id] = one_header;
// // page_id[0]++;
// // if(one_header->bitmap!=0 && one_header->block_id > decision_id[0])
// // decision_id[0] = one_header->block_id;
// // }
// // else//log_block
// // {
// // nlog_list[one_header->block_id] = one_header;
// // page_id[1]++;
// // if(one_header->bitmap!=0 && one_header->block_id > decision_id[1])
// // decision_id[1] = one_header->block_id;
// // }
// // recover_start += CHUNK_SIZE;
// // }
// //next, rebuld DRAM leaf based on PLeaf and insert into concurrent hash map
// //#pragma omp parallel num_threads(28)
// //return;
// #endif
#ifdef RECOVERY
clht_gc_thread_init(fast_hash, thread_num);
void * recover_start = start_address;
size_t* dummy_array = (size_t*)(recover_start + 64);
if(dummy_array[0] != 0)
{
std::cout<<"get anchor !"<<std::endl;
anchor = dummy_array[0];
}
void * recover_end = reinterpret_cast<void*>((size_t)recover_start + pool_len);
recover_start += 1024;
//first, collect every block and rebuild thread local hash map
while(recover_start < start_address + pool_len)
{
Base_Meta* one_header = (Base_Meta*)recover_start;
if(one_header->bitmap == 0)
{
int do_nothing = 0;
}
else if(one_header->block_type == NODE_BLK)//tree_block
{
nfree_list[one_header->block_id] = one_header;
page_id[0]++;
if(one_header->bitmap!=0 && one_header->block_id > decision_id[0])
decision_id[0] = one_header->block_id;
}
else if(one_header->bitmap == 114514)//log_block
{
nlog_list[one_header->block_id] = one_header;
page_id[1]++;
if(one_header->bitmap!=0 && one_header->block_id > decision_id[1])
decision_id[1] = one_header->block_id;
}
recover_start += CHUNK_SIZE;
}
//next, rebuld DRAM leaf based on PLeaf and insert into concurrent hash map
//#pragma omp parallel num_threads(28)
//{
for(auto iter=nfree_list.begin(); iter!=nfree_list.end(); iter++)
{
Base_Meta* one_chunk = iter->second;
size_t data_start = (size_t)one_chunk + 64;
for(int i=0; i<one_chunk->bitmap; i+=sizeof(Dummy_PLeaf2))
{
//atm_pos++;
Dummy_PLeaf2* pleaf = (Dummy_PLeaf2*)(data_start + i);
//prefetch0(pleaf, sizeof(Dummy_pleaf));
Dummy_DLeaf2* dleaf = (Dummy_DLeaf2*)malloc(sizeof(Dummy_DLeaf2));
dleaf->alt_ptr = pleaf;
//dleaf->version_field = pleaf->version_field;
dleaf->temp_insert = 0;
dleaf->max_use = 0;
//dleaf->min_key = pleaf->min_key;
dleaf->max_key = pleaf->max_key;
#ifdef SNAP
for(int j=0; j<DUMMY_MAX_LEAF_KEY; j++)
{
if((pleaf->bitmap>>j)&1 == 1)
{
uint8_t fingerprint = fp_hash(pleaf->slot_all[j].one_key);
if(pleaf->slot_all[j].one_key < dleaf->min_key)
dleaf->min_key = pleaf->slot_all[j].one_key;
dleaf->hash_byte[j] = fingerprint;
dleaf->buffer[j] = pleaf->slot_all[j];
dleaf->max_use++;
}
}
#endif
//rebuild_map[pleaf] = dleaf;
clht_put(fast_hash, (clht_addr_t)pleaf, (clht_val_t)dleaf);
}
}
//}
return;
#endif
}
void N_alc::link_ptr(clht_t* fast_hash){
#ifdef RECOVERY
for(auto iter = nfree_list.begin(); iter != nfree_list.end(); iter++){
Base_Meta* one_chunk = iter->second;
size_t data_start = (size_t)one_chunk + 64;
for(int i=0; i<one_chunk->bitmap; i+=sizeof(Dummy_PLeaf2))
{
Dummy_PLeaf2 * pleaf = (Dummy_PLeaf2*)(data_start + i);
Dummy_DLeaf2* dleaf = (Dummy_DLeaf2*)clht_get(fast_hash->ht, size_t(pleaf));
void* pnext = pleaf->next;
if(pnext != nullptr)
dleaf->next = (Dummy_DLeaf2*)clht_get(fast_hash->ht, (size_t)pnext);
else
dleaf->next = nullptr;
//dleaf->next = (Dummy_dleaf*)rebuild_map[pnext];
}
}
#endif
}
void N_alc::get_more_chunk(int chunk_num, std::unordered_map<uint32_t, Base_Meta*> &temp_list, int pos){
for(int i=0; i<chunk_num; i++)
{
Base_Meta* new_chunk = reinterpret_cast<Base_Meta*>(end_address);
new_chunk->bitmap = 0;//size allocated
new_chunk->start_address = reinterpret_cast<void*>((size_t)end_address + sizeof(Base_Meta));
end_address = reinterpret_cast<void*>((size_t)end_address + CHUNK_SIZE);
new_chunk->block_id = page_id[pos];
if(pos == 0)
new_chunk->block_type = NODE_BLK;
else
new_chunk->block_type = LOG_BLK;
#ifndef EADR
persist(new_chunk);
#endif
//std::pair<uint32_t, Base_Meta*> one_pair;
//one_pair.first = page_id[pos];
//one_pair.second = new_chunk;
temp_list[page_id[pos]] = new_chunk;
//temp_list.emplace(page_id[pos], new_chunk);
page_id[pos]++;
//__sync_fetch_and_add(&page_id[pos], 1);
//page_id[pos]++;
}
persist_fence();
}
/*void PM_allocator::extend_heap(){
}*/
Base_Meta* N_alc::get_free_block(std::unordered_map<uint32_t, Base_Meta*> &temp_list, int pos){
Base_Meta* new_meta = temp_list[decision_id[pos]];
if(new_meta == nullptr)
{
//temp_list.erase(decision_id[pos]);
get_more_chunk(4, temp_list, pos);
new_meta = temp_list[decision_id[pos]];
}
return new_meta;
/*for(auto iter = temp_list.begin(); iter != temp_list.end(); iter++){
{
new_meta = iter->second;
break;
}
}*/
}
void* N_alc::n_allocate(uint32_t sz, int log_alc){
int free_pos = 0;
Base_Meta* free_block;
if(log_alc == 0) //tree allocate
{
if(release_list.size()!=0)//fast path (maybe)
{
auto return_address = release_list.begin();
Base_Meta* free_block = return_address->block_id;
free_block->bitmap+=sz;
persist(free_block);
#ifdef EADR
persist_fence();
#endif
void* return2user = return_address->address;
release_list.pop_front();
return return2user;
}
free_block = nfree_list[decision_id[0]];
}
else //log allocate
{
free_block = get_free_block(nlog_list, 1);
decision_id[1]++;
}
if(free_block->bitmap + sz > CHUNK_SIZE - sizeof(Base_Meta) && log_alc == 0) // no enough space for object
{
//free_list.erase(decision_id);
decision_id[0]++;
//__sync_fetch_and_add(&decision_id[0], 1);
//decision_id[0]++;
free_block = get_free_block(nfree_list, 0);
free_block->block_type = NODE_BLK;
}
void* return_address = reinterpret_cast<void*>((size_t)free_block->start_address + free_block->bitmap);
if(log_alc != 0)
{
free_block->block_type = LOG_BLK;
free_block->block_id = decision_id[1];
free_block->bitmap = 114514;
}
else
{
free_block->bitmap += sz;
persist(free_block);
}
#ifdef EADR
persist_fence();
#endif
return return_address;
//}
}
void N_alc::n_free(void* ptr, size_t sz){
//change meta
uint64_t ptr_offset = (reinterpret_cast<uint64_t>(ptr)>>CHUNK_SHIFT) - (reinterpret_cast<uint64_t>(start_address + 1024)>>CHUNK_SHIFT);
void* free_address = reinterpret_cast<void*>((size_t)(start_address + 1024) + ptr_offset * CHUNK_SIZE);
//uint64_t free_pos = (reinterpret_cast<uint64_t>(ptr) - reinterpret_cast<uint64_t>(free_address)) / grid;
if(ptr_offset < 0)
{
std::cout<<"invalid address"<<std::endl;
exit(1);
}
Base_Meta* header = reinterpret_cast<Base_Meta*>(free_address);
if(sz == 0)//free one log chunk, just erase it and readd to map
{
uint32_t blk_id = header->block_id;
nlog_list.erase(blk_id);
header->block_id = page_id[1];
header->bitmap = 0;
persist(header);
#ifdef EADR
persist_fence();
#endif
nlog_list[page_id[1]] = header;
page_id[1]++;
}
else//free leaf node, fixed size required
{
// header->bitmap[1] += sz;
// if(header->bitmap[1] == 0)//completely empty, add to map
// {
// uint32_t blk_id = header->block_id;
// nfree_list.erase(blk_id);
// header->block_id = page_id[0];
// persist(header);
// #ifdef EADR
// persist_fence();
// #endif
// nfree_list[page_id[0]] = header;
// page_id[0]++;
// //narrow down the fast path's size
// //181243799828
// //129746018818
// //185232154996
// //133316543418
// auto iter = release_list.begin();
// while(iter != release_list.end())
// {
// if(iter->block_id == header)
// {
// release_list.erase(iter++);
// }
// else
// ++iter;
// }
//}
// else //partical free, add to fast path
// {
// List_node new_node;
// new_node.address = ptr;
// new_node.block_id = header;
// release_list.push_back(new_node);
// }
return;
}
}
void N_alc::ignore_recover(){
void * recover_start = start_address;
size_t* dummy_array = (size_t*)(recover_start + 64);
void * recover_end = reinterpret_cast<void*>((size_t)recover_start + pool_len);
recover_start += 1024;
//first, collect every block and rebuild thread local hash map
while(recover_start < start_address + pool_len)
{
Base_Meta* one_header = (Base_Meta*)recover_start;
if(one_header->bitmap == 0)
{
int do_nothing = 0;
}
else if(one_header->block_type == NODE_BLK)//tree_block
{
nfree_list[one_header->block_id] = one_header;
page_id[0]++;
if(one_header->bitmap!=0 && one_header->block_id > decision_id[0])
decision_id[0] = one_header->block_id;
}
else if(one_header->bitmap == 114514)//log_block
{
nlog_list[one_header->block_id] = one_header;
page_id[1]++;
if(one_header->bitmap!=0 && one_header->block_id > decision_id[1])
decision_id[1] = one_header->block_id;
}
recover_start += CHUNK_SIZE;
}
}
/**************************** D_ALC *****************************************/
#ifdef DALC
Base_Meta* D_alc::get_free_block(std::unordered_map<uint32_t, Base_Meta*> &temp_list, int pos){
Base_Meta* return_block = nullptr;
return_block = temp_list[decision_id[pos]];
if(return_block == nullptr)
{
get_push_back(temp_list, 4, pos);
return_block = temp_list[decision_id[pos]];
}
return return_block;
}
void D_alc::get_push_back(std::unordered_map<uint32_t, Base_Meta*> &temp_list, int blk_num, int pos){
for(int i=0; i<blk_num; i++)
{
Base_Meta* new_block = (Base_Meta*)huge_require(CHUNK_SIZE);
new_block->bitmap = 0;
new_block->bitmap = 0;
new_block->start_address = reinterpret_cast<void*>((size_t) new_block + sizeof(Base_Meta));
new_block->block_id = page_id[pos];
//std::pair<uint32_t, Base_Meta*> map_pair;
//map_pair.first = page_id[pos];
//map_pair.second = new_block;
temp_list[page_id[pos]] = new_block;
//page_id[pos]++;
__sync_fetch_and_add(&page_id[pos], 1);
}
}
void* D_alc::huge_require(uint32_t require_size){//require huge page from system
void* return_ptr = nullptr;
posix_memalign(&return_ptr, CACHELINE, require_size);//align require_size memory to times of CHUNK_SIZE
//return_ptr = malloc(require_size);//get huge pages
if(return_ptr == nullptr){
std::cerr<<"bad alloc"<<std::endl;
throw std::bad_alloc();
}
return return_ptr;
}
void D_alc::huge_release(void* huge_ptr){//return huge page to system
std::free(huge_ptr);
}
uint64_t D_alc::huge_malloc(uint32_t size, int variable_flag){//distribute hugepage to exact user
if(variable_flag != 0)//used to store variable key
{
Base_Meta* head = var_list[decision_id[1]];
if(head->bitmap + size > CHUNK_SIZE - sizeof(Base_Meta))
{
//var_list.erase(decision_id);
__sync_fetch_and_add(&decision_id[1], 1);
//decision_id[1]++;
head = get_free_block(var_list, 1);
}
uint64_t offset = (head->block_id << CHUNK_SHIFT) + head->bitmap + CACHELINE;
head->bitmap += size;
return offset;
}
//return malloc(size);
Base_Meta* this_meta = dfree_list[decision_id[0]];//TODO: add way to locate base meta
//int pos = meta_find_slot(this_meta);
if(this_meta->bitmap + size > CHUNK_SIZE - sizeof(Base_Meta))
{
//dfree_list.erase(decision_id);
__sync_fetch_and_add(&decision_id[0], 1);
//decision_id[0]++;
this_meta = get_free_block(dfree_list, 0);
}
uint64_t offset = (uint64_t)this_meta->start_address + this_meta->bitmap;
this_meta->bitmap += size;
return offset;
}
void D_alc::huge_free(void* ptr){//return huge page to huge manager
//locate
uint64_t pure_val_ptr = reinterpret_cast<uint64_t>(ptr)>>CHUNK_SHIFT;
uint64_t pure_val_ptr2 = pure_val_ptr - 1;
uint64_t result = hash_decode(pure_val_ptr);
uint64_t result2 = hash_decode(pure_val_ptr2);
Base_Meta* this_meta;
if(result == 0 && result2 == 0)
{
std::cout<<"bad alc"<<std::endl;
return;
}
else if(result!=0 && result2 == 0)
this_meta = (Base_Meta*)result;
else if(result==0 && result2 != 0)
this_meta = (Base_Meta*)result2;
else
{
uint64_t true_result = (result > (uint64_t)ptr ? result2 : result);
this_meta = (Base_Meta*)true_result;
}
if(this_meta->bitmap >= CHUNK_SIZE * 0.75)//reach threshold, reclaim
huge_release(this_meta);
else // partical empty
{
/*int find_pos=1;
bit_set(this_meta->bitmap, find_pos, 1);*/
}
return;
}
void* D_alc::address_trans(uint64_t ptr, int list_flag){
void* header;
size_t arc_header;
if(list_flag !=0)
arc_header = (size_t)var_list[ptr>>CHUNK_SHIFT];
else
arc_header = (size_t)dfree_list[ptr>>CHUNK_SHIFT];
header = (void*) (arc_header + (ptr & MASK));
return header;
}
D_alc::D_alc(){
//get_push_back();
page_id[0] = 0;
decision_id[0] = 0;
get_push_back(dfree_list, 4, 0);
//std::cout<<"DSTART at "<< address_trans(0, 0) <<std::endl;
#ifdef VAR_KEY
page_id[1] = 0;
decision_id[1] = 0;
get_push_back(var_list, 16, 1);
#endif
//std::cout<<dfree_list.size();
}
D_alc::~D_alc(){
}
#endif