-
Notifications
You must be signed in to change notification settings - Fork 15.3k
/
sparse_embeddings.py
36 lines (26 loc) · 1.11 KB
/
sparse_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from abc import ABC, abstractmethod
from typing import List
from langchain_core.runnables.config import run_in_executor
from pydantic import BaseModel, Field
class SparseVector(BaseModel, extra="forbid"):
"""
Sparse vector structure
"""
indices: List[int] = Field(..., description="indices must be unique")
values: List[float] = Field(
..., description="values and indices must be the same length"
)
class SparseEmbeddings(ABC):
"""An interface for sparse embedding models to use with Qdrant."""
@abstractmethod
def embed_documents(self, texts: List[str]) -> List[SparseVector]:
"""Embed search docs."""
@abstractmethod
def embed_query(self, text: str) -> SparseVector:
"""Embed query text."""
async def aembed_documents(self, texts: List[str]) -> List[SparseVector]:
"""Asynchronous Embed search docs."""
return await run_in_executor(None, self.embed_documents, texts)
async def aembed_query(self, text: str) -> SparseVector:
"""Asynchronous Embed query text."""
return await run_in_executor(None, self.embed_query, text)