-
Notifications
You must be signed in to change notification settings - Fork 15.3k
/
azure.py
739 lines (610 loc) Β· 26.9 KB
/
azure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
"""Azure OpenAI chat wrapper."""
from __future__ import annotations
import logging
import os
from typing import (
Any,
Awaitable,
Callable,
Dict,
List,
Optional,
Type,
TypedDict,
TypeVar,
Union,
)
import openai
from langchain_core.language_models.chat_models import LangSmithParams
from langchain_core.messages import BaseMessage
from langchain_core.outputs import ChatResult
from langchain_core.utils import from_env, secret_from_env
from langchain_core.utils.pydantic import is_basemodel_subclass
from pydantic import BaseModel, Field, SecretStr, model_validator
from typing_extensions import Self
from langchain_openai.chat_models.base import BaseChatOpenAI
logger = logging.getLogger(__name__)
_BM = TypeVar("_BM", bound=BaseModel)
_DictOrPydanticClass = Union[Dict[str, Any], Type[_BM]]
_DictOrPydantic = Union[Dict, _BM]
class _AllReturnType(TypedDict):
raw: BaseMessage
parsed: Optional[_DictOrPydantic]
parsing_error: Optional[BaseException]
def _is_pydantic_class(obj: Any) -> bool:
return isinstance(obj, type) and is_basemodel_subclass(obj)
class AzureChatOpenAI(BaseChatOpenAI):
"""Azure OpenAI chat model integration.
Setup:
Head to the https://learn.microsoft.com/en-us/azure/ai-services/openai/chatgpt-quickstart?tabs=command-line%2Cpython-new&pivots=programming-language-python
to create your Azure OpenAI deployment.
Then install ``langchain-openai`` and set environment variables
``AZURE_OPENAI_API_KEY`` and ``AZURE_OPENAI_ENDPOINT``:
.. code-block:: bash
pip install -U langchain-openai
export AZURE_OPENAI_API_KEY="your-api-key"
export AZURE_OPENAI_ENDPOINT="https://your-endpoint.openai.azure.com/"
Key init args β completion params:
azure_deployment: str
Name of Azure OpenAI deployment to use.
temperature: float
Sampling temperature.
max_tokens: Optional[int]
Max number of tokens to generate.
logprobs: Optional[bool]
Whether to return logprobs.
Key init args β client params:
api_version: str
Azure OpenAI API version to use. See more on the different versions here:
https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#rest-api-versioning
timeout: Union[float, Tuple[float, float], Any, None]
Timeout for requests.
max_retries: int
Max number of retries.
organization: Optional[str]
OpenAI organization ID. If not passed in will be read from env
var OPENAI_ORG_ID.
model: Optional[str]
The name of the underlying OpenAI model. Used for tracing and token
counting. Does not affect completion. E.g. "gpt-4", "gpt-35-turbo", etc.
model_version: Optional[str]
The version of the underlying OpenAI model. Used for tracing and token
counting. Does not affect completion. E.g., "0125", "0125-preview", etc.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(
azure_deployment="your-deployment",
api_version="2024-05-01-preview",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# organization="...",
# model="gpt-35-turbo",
# model_version="0125",
# other params...
)
**NOTE**: Any param which is not explicitly supported will be passed directly to the
``openai.AzureOpenAI.chat.completions.create(...)`` API every time to the model is
invoked. For example:
.. code-block:: python
from langchain_openai import AzureChatOpenAI
import openai
AzureChatOpenAI(..., logprobs=True).invoke(...)
# results in underlying API call of:
openai.AzureOpenAI(..).chat.completions.create(..., logprobs=True)
# which is also equivalent to:
AzureChatOpenAI(...).invoke(..., logprobs=True)
Invoke:
.. code-block:: python
messages = [
(
"system",
"You are a helpful translator. Translate the user sentence to French.",
),
("human", "I love programming."),
]
llm.invoke(messages)
.. code-block:: python
AIMessage(
content="J'adore programmer.",
usage_metadata={"input_tokens": 28, "output_tokens": 6, "total_tokens": 34},
response_metadata={
"token_usage": {
"completion_tokens": 6,
"prompt_tokens": 28,
"total_tokens": 34,
},
"model_name": "gpt-4",
"system_fingerprint": "fp_7ec89fabc6",
"prompt_filter_results": [
{
"prompt_index": 0,
"content_filter_results": {
"hate": {"filtered": False, "severity": "safe"},
"self_harm": {"filtered": False, "severity": "safe"},
"sexual": {"filtered": False, "severity": "safe"},
"violence": {"filtered": False, "severity": "safe"},
},
}
],
"finish_reason": "stop",
"logprobs": None,
"content_filter_results": {
"hate": {"filtered": False, "severity": "safe"},
"self_harm": {"filtered": False, "severity": "safe"},
"sexual": {"filtered": False, "severity": "safe"},
"violence": {"filtered": False, "severity": "safe"},
},
},
id="run-6d7a5282-0de0-4f27-9cc0-82a9db9a3ce9-0",
)
Stream:
.. code-block:: python
for chunk in llm.stream(messages):
print(chunk)
.. code-block:: python
AIMessageChunk(content="", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
AIMessageChunk(content="J", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
AIMessageChunk(content="'", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
AIMessageChunk(content="ad", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
AIMessageChunk(content="ore", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
AIMessageChunk(content=" la", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
AIMessageChunk(content=" programm", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
AIMessageChunk(content="ation", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
AIMessageChunk(content=".", id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f")
AIMessageChunk(
content="",
response_metadata={
"finish_reason": "stop",
"model_name": "gpt-4",
"system_fingerprint": "fp_811936bd4f",
},
id="run-a6f294d3-0700-4f6a-abc2-c6ef1178c37f",
)
.. code-block:: python
stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full
.. code-block:: python
AIMessageChunk(
content="J'adore la programmation.",
response_metadata={
"finish_reason": "stop",
"model_name": "gpt-4",
"system_fingerprint": "fp_811936bd4f",
},
id="run-ba60e41c-9258-44b8-8f3a-2f10599643b3",
)
Async:
.. code-block:: python
await llm.ainvoke(messages)
# stream:
# async for chunk in (await llm.astream(messages))
# batch:
# await llm.abatch([messages])
Tool calling:
.. code-block:: python
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(
..., description="The city and state, e.g. San Francisco, CA"
)
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(
..., description="The city and state, e.g. San Francisco, CA"
)
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke(
"Which city is hotter today and which is bigger: LA or NY?"
)
ai_msg.tool_calls
.. code-block:: python
[
{
"name": "GetWeather",
"args": {"location": "Los Angeles, CA"},
"id": "call_6XswGD5Pqk8Tt5atYr7tfenU",
},
{
"name": "GetWeather",
"args": {"location": "New York, NY"},
"id": "call_ZVL15vA8Y7kXqOy3dtmQgeCi",
},
{
"name": "GetPopulation",
"args": {"location": "Los Angeles, CA"},
"id": "call_49CFW8zqC9W7mh7hbMLSIrXw",
},
{
"name": "GetPopulation",
"args": {"location": "New York, NY"},
"id": "call_6ghfKxV264jEfe1mRIkS3PE7",
},
]
Structured output:
.. code-block:: python
from typing import Optional
from pydantic import BaseModel, Field
class Joke(BaseModel):
'''Joke to tell user.'''
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
.. code-block:: python
Joke(
setup="Why was the cat sitting on the computer?",
punchline="To keep an eye on the mouse!",
rating=None,
)
See ``AzureChatOpenAI.with_structured_output()`` for more.
JSON mode:
.. code-block:: python
json_llm = llm.bind(response_format={"type": "json_object"})
ai_msg = json_llm.invoke(
"Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]"
)
ai_msg.content
.. code-block:: python
'\\n{\\n "random_ints": [23, 87, 45, 12, 78, 34, 56, 90, 11, 67]\\n}'
Image input:
.. code-block:: python
import base64
import httpx
from langchain_core.messages import HumanMessage
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
]
)
ai_msg = llm.invoke([message])
ai_msg.content
.. code-block:: python
"The weather in the image appears to be quite pleasant. The sky is mostly clear"
Token usage:
.. code-block:: python
ai_msg = llm.invoke(messages)
ai_msg.usage_metadata
.. code-block:: python
{"input_tokens": 28, "output_tokens": 5, "total_tokens": 33}
Logprobs:
.. code-block:: python
logprobs_llm = llm.bind(logprobs=True)
ai_msg = logprobs_llm.invoke(messages)
ai_msg.response_metadata["logprobs"]
.. code-block:: python
{
"content": [
{
"token": "J",
"bytes": [74],
"logprob": -4.9617593e-06,
"top_logprobs": [],
},
{
"token": "'adore",
"bytes": [39, 97, 100, 111, 114, 101],
"logprob": -0.25202933,
"top_logprobs": [],
},
{
"token": " la",
"bytes": [32, 108, 97],
"logprob": -0.20141791,
"top_logprobs": [],
},
{
"token": " programmation",
"bytes": [
32,
112,
114,
111,
103,
114,
97,
109,
109,
97,
116,
105,
111,
110,
],
"logprob": -1.9361265e-07,
"top_logprobs": [],
},
{
"token": ".",
"bytes": [46],
"logprob": -1.2233183e-05,
"top_logprobs": [],
},
]
}
Response metadata
.. code-block:: python
ai_msg = llm.invoke(messages)
ai_msg.response_metadata
.. code-block:: python
{
"token_usage": {
"completion_tokens": 6,
"prompt_tokens": 28,
"total_tokens": 34,
},
"model_name": "gpt-35-turbo",
"system_fingerprint": None,
"prompt_filter_results": [
{
"prompt_index": 0,
"content_filter_results": {
"hate": {"filtered": False, "severity": "safe"},
"self_harm": {"filtered": False, "severity": "safe"},
"sexual": {"filtered": False, "severity": "safe"},
"violence": {"filtered": False, "severity": "safe"},
},
}
],
"finish_reason": "stop",
"logprobs": None,
"content_filter_results": {
"hate": {"filtered": False, "severity": "safe"},
"self_harm": {"filtered": False, "severity": "safe"},
"sexual": {"filtered": False, "severity": "safe"},
"violence": {"filtered": False, "severity": "safe"},
},
}
""" # noqa: E501
azure_endpoint: Optional[str] = Field(
default_factory=from_env("AZURE_OPENAI_ENDPOINT", default=None)
)
"""Your Azure endpoint, including the resource.
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
Example: `https://example-resource.azure.openai.com/`
"""
deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment")
"""A model deployment.
If given sets the base client URL to include `/deployments/{azure_deployment}`.
Note: this means you won't be able to use non-deployment endpoints.
"""
openai_api_version: Optional[str] = Field(
alias="api_version",
default_factory=from_env("OPENAI_API_VERSION", default=None),
)
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
# Check OPENAI_API_KEY for backwards compatibility.
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
# other forms of azure credentials.
openai_api_key: Optional[SecretStr] = Field(
alias="api_key",
default_factory=secret_from_env(
["AZURE_OPENAI_API_KEY", "OPENAI_API_KEY"], default=None
),
)
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
azure_ad_token: Optional[SecretStr] = Field(
default_factory=secret_from_env("AZURE_OPENAI_AD_TOKEN", default=None)
)
"""Your Azure Active Directory token.
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
For more:
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
"""
azure_ad_token_provider: Union[Callable[[], str], None] = None
"""A function that returns an Azure Active Directory token.
Will be invoked on every sync request. For async requests,
will be invoked if `azure_ad_async_token_provider` is not provided.
"""
azure_ad_async_token_provider: Union[Callable[[], Awaitable[str]], None] = None
"""A function that returns an Azure Active Directory token.
Will be invoked on every async request.
"""
model_version: str = ""
"""The version of the model (e.g. "0125" for gpt-3.5-0125).
Azure OpenAI doesn't return model version with the response by default so it must
be manually specified if you want to use this information downstream, e.g. when
calculating costs.
When you specify the version, it will be appended to the model name in the
response. Setting correct version will help you to calculate the cost properly.
Model version is not validated, so make sure you set it correctly to get the
correct cost.
"""
openai_api_type: Optional[str] = Field(
default_factory=from_env("OPENAI_API_TYPE", default="azure")
)
"""Legacy, for openai<1.0.0 support."""
validate_base_url: bool = True
"""If legacy arg openai_api_base is passed in, try to infer if it is a base_url or
azure_endpoint and update client params accordingly.
"""
model_name: Optional[str] = Field(default=None, alias="model") # type: ignore[assignment]
"""Name of the deployed OpenAI model, e.g. "gpt-4o", "gpt-35-turbo", etc.
Distinct from the Azure deployment name, which is set by the Azure user.
Used for tracing and token counting. Does NOT affect completion.
"""
disabled_params: Optional[Dict[str, Any]] = Field(default=None)
"""Parameters of the OpenAI client or chat.completions endpoint that should be
disabled for the given model.
Should be specified as ``{"param": None | ['val1', 'val2']}`` where the key is the
parameter and the value is either None, meaning that parameter should never be
used, or it's a list of disabled values for the parameter.
For example, older models may not support the 'parallel_tool_calls' parameter at
all, in which case ``disabled_params={"parallel_tool_calls: None}`` can ben passed
in.
If a parameter is disabled then it will not be used by default in any methods, e.g.
in
:meth:`~langchain_openai.chat_models.azure.AzureChatOpenAI.with_structured_output`.
However this does not prevent a user from directly passed in the parameter during
invocation.
By default, unless ``model_name="gpt-4o"`` is specified, then
'parallel_tools_calls' will be disabled.
"""
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "chat_models", "azure_openai"]
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"openai_api_key": "AZURE_OPENAI_API_KEY",
"azure_ad_token": "AZURE_OPENAI_AD_TOKEN",
}
@classmethod
def is_lc_serializable(cls) -> bool:
return True
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
if self.n < 1:
raise ValueError("n must be at least 1.")
if self.n > 1 and self.streaming:
raise ValueError("n must be 1 when streaming.")
if self.disabled_params is None:
# As of 09-17-2024 'parallel_tool_calls' param is only supported for gpt-4o.
if self.model_name and self.model_name == "gpt-4o":
pass
else:
self.disabled_params = {"parallel_tool_calls": None}
# Check OPENAI_ORGANIZATION for backwards compatibility.
self.openai_organization = (
self.openai_organization
or os.getenv("OPENAI_ORG_ID")
or os.getenv("OPENAI_ORGANIZATION")
)
# For backwards compatibility. Before openai v1, no distinction was made
# between azure_endpoint and base_url (openai_api_base).
openai_api_base = self.openai_api_base
if openai_api_base and self.validate_base_url:
if "/openai" not in openai_api_base:
raise ValueError(
"As of openai>=1.0.0, Azure endpoints should be specified via "
"the `azure_endpoint` param not `openai_api_base` "
"(or alias `base_url`)."
)
if self.deployment_name:
raise ValueError(
"As of openai>=1.0.0, if `azure_deployment` (or alias "
"`deployment_name`) is specified then "
"`base_url` (or alias `openai_api_base`) should not be. "
"If specifying `azure_deployment`/`deployment_name` then use "
"`azure_endpoint` instead of `base_url`.\n\n"
"For example, you could specify:\n\n"
'azure_endpoint="https://xxx.openai.azure.com/", '
'azure_deployment="my-deployment"\n\n'
"Or you can equivalently specify:\n\n"
'base_url="https://xxx.openai.azure.com/openai/deployments/my-deployment"'
)
client_params: dict = {
"api_version": self.openai_api_version,
"azure_endpoint": self.azure_endpoint,
"azure_deployment": self.deployment_name,
"api_key": (
self.openai_api_key.get_secret_value() if self.openai_api_key else None
),
"azure_ad_token": (
self.azure_ad_token.get_secret_value() if self.azure_ad_token else None
),
"azure_ad_token_provider": self.azure_ad_token_provider,
"organization": self.openai_organization,
"base_url": self.openai_api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
}
if not self.client:
sync_specific = {"http_client": self.http_client}
self.root_client = openai.AzureOpenAI(**client_params, **sync_specific) # type: ignore[arg-type]
self.client = self.root_client.chat.completions
if not self.async_client:
async_specific = {"http_client": self.http_async_client}
if self.azure_ad_async_token_provider:
client_params["azure_ad_token_provider"] = (
self.azure_ad_async_token_provider
)
self.root_async_client = openai.AsyncAzureOpenAI(
**client_params,
**async_specific, # type: ignore[arg-type]
)
self.async_client = self.root_async_client.chat.completions
return self
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
**{"azure_deployment": self.deployment_name},
**super()._identifying_params,
}
@property
def _llm_type(self) -> str:
return "azure-openai-chat"
@property
def lc_attributes(self) -> Dict[str, Any]:
return {
"openai_api_type": self.openai_api_type,
"openai_api_version": self.openai_api_version,
}
def _get_ls_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> LangSmithParams:
"""Get the parameters used to invoke the model."""
params = super()._get_ls_params(stop=stop, **kwargs)
params["ls_provider"] = "azure"
if self.model_name:
if self.model_version and self.model_version not in self.model_name:
params["ls_model_name"] = (
self.model_name + "-" + self.model_version.lstrip("-")
)
else:
params["ls_model_name"] = self.model_name
elif self.deployment_name:
params["ls_model_name"] = self.deployment_name
return params
def _create_chat_result(
self,
response: Union[dict, openai.BaseModel],
generation_info: Optional[Dict] = None,
) -> ChatResult:
chat_result = super()._create_chat_result(response, generation_info)
if not isinstance(response, dict):
response = response.model_dump()
for res in response["choices"]:
if res.get("finish_reason", None) == "content_filter":
raise ValueError(
"Azure has not provided the response due to a content filter "
"being triggered"
)
if "model" in response:
model = response["model"]
if self.model_version:
model = f"{model}-{self.model_version}"
chat_result.llm_output = chat_result.llm_output or {}
chat_result.llm_output["model_name"] = model
if "prompt_filter_results" in response:
chat_result.llm_output = chat_result.llm_output or {}
chat_result.llm_output["prompt_filter_results"] = response[
"prompt_filter_results"
]
for chat_gen, response_choice in zip(
chat_result.generations, response["choices"]
):
chat_gen.generation_info = chat_gen.generation_info or {}
chat_gen.generation_info["content_filter_results"] = response_choice.get(
"content_filter_results", {}
)
return chat_result