Skip to content

Latest commit

 

History

History
 
 

deeplabv3

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rethinking atrous convolution for semantic image segmentation

Introduction

Official Repo

Code Snippet

Abstract

In this work, we revisit atrous convolution, a powerful tool to explicitly adjust filter's field-of-view as well as control the resolution of feature responses computed by Deep Convolutional Neural Networks, in the application of semantic image segmentation. To handle the problem of segmenting objects at multiple scales, we design modules which employ atrous convolution in cascade or in parallel to capture multi-scale context by adopting multiple atrous rates. Furthermore, we propose to augment our previously proposed Atrous Spatial Pyramid Pooling module, which probes convolutional features at multiple scales, with image-level features encoding global context and further boost performance. We also elaborate on implementation details and share our experience on training our system. The proposed `DeepLabv3' system significantly improves over our previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2012 semantic image segmentation benchmark.

DeepLabV3 (ArXiv'2017)
@article{chen2017rethinking,
  title={Rethinking atrous convolution for semantic image segmentation},
  author={Chen, Liang-Chieh and Papandreou, George and Schroff, Florian and Adam, Hartwig},
  journal={arXiv preprint arXiv:1706.05587},
  year={2017}
}

Results and models

:::{note} D-8 here corresponding to the output stride 8 setting for DeepLab series. :::

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3 R-50-D8 512x1024 40000 6.1 2.57 79.09 80.45 config model | log
DeepLabV3 R-101-D8 512x1024 40000 9.6 1.92 77.12 79.61 config model | log
DeepLabV3 R-50-D8 769x769 40000 6.9 1.11 78.58 79.89 config model | log
DeepLabV3 R-101-D8 769x769 40000 10.9 0.83 79.27 80.11 config model | log
DeepLabV3 R-18-D8 512x1024 80000 1.7 13.78 76.70 78.27 config model | log
DeepLabV3 R-50-D8 512x1024 80000 - - 79.32 80.57 config model | log
DeepLabV3 R-101-D8 512x1024 80000 - - 80.20 81.21 config model | log
DeepLabV3 (FP16) R-101-D8 512x1024 80000 5.75 3.86 80.48 - config model | log
DeepLabV3 R-18-D8 769x769 80000 1.9 5.55 76.60 78.26 config model | log
DeepLabV3 R-50-D8 769x769 80000 - - 79.89 81.06 config model | log
DeepLabV3 R-101-D8 769x769 80000 - - 79.67 80.81 config model | log
DeepLabV3 R-101-D16-MG124 512x1024 40000 4.7 - 6.96 76.71 78.63 config model | log
DeepLabV3 R-101-D16-MG124 512x1024 80000 - - 78.36 79.84 config model | log
DeepLabV3 R-18b-D8 512x1024 80000 1.6 13.93 76.26 77.88 config model | log
DeepLabV3 R-50b-D8 512x1024 80000 6.0 2.74 79.63 80.98 config model | log
DeepLabV3 R-101b-D8 512x1024 80000 9.5 1.81 80.01 81.21 config model | log
DeepLabV3 R-18b-D8 769x769 80000 1.8 5.79 76.63 77.51 config model | log
DeepLabV3 R-50b-D8 769x769 80000 6.8 1.16 78.80 80.27 config model | log
DeepLabV3 R-101b-D8 769x769 80000 10.7 0.82 79.41 80.73 config model | log

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3 R-50-D8 512x512 80000 8.9 14.76 42.42 43.28 config model | log
DeepLabV3 R-101-D8 512x512 80000 12.4 10.14 44.08 45.19 config model | log
DeepLabV3 R-50-D8 512x512 160000 - - 42.66 44.09 config model | log
DeepLabV3 R-101-D8 512x512 160000 - - 45.00 46.66 config model | log

Pascal VOC 2012 + Aug

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3 R-50-D8 512x512 20000 6.1 13.88 76.17 77.42 config model | log
DeepLabV3 R-101-D8 512x512 20000 9.6 9.81 78.70 79.95 config model | log
DeepLabV3 R-50-D8 512x512 40000 - - 77.68 78.78 config model | log
DeepLabV3 R-101-D8 512x512 40000 - - 77.92 79.18 config model | log

Pascal Context

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3 R-101-D8 480x480 40000 9.2 7.09 46.55 47.81 config model | log
DeepLabV3 R-101-D8 480x480 80000 - - 46.42 47.53 config model | log

Pascal Context 59

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3 R-101-D8 480x480 40000 - - 52.61 54.28 config model | log
DeepLabV3 R-101-D8 480x480 80000 - - 52.46 54.09 config model | log

COCO-Stuff 10k

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3 R-50-D8 512x512 20000 9.6 10.8 34.66 36.08 config model | log
DeepLabV3 R-101-D8 512x512 20000 13.2 8.7 37.30 38.42 config model | log
DeepLabV3 R-50-D8 512x512 40000 - - 35.73 37.09 config model | log
DeepLabV3 R-101-D8 512x512 40000 - - 37.81 38.80 config model | log

COCO-Stuff 164k

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3 R-50-D8 512x512 80000 9.6 10.8 39.38 40.03 config model | log
DeepLabV3 R-101-D8 512x512 80000 13.2 8.7 40.87 41.50 config model | log
DeepLabV3 R-50-D8 512x512 160000 - - 41.09 41.69 config model | log
DeepLabV3 R-101-D8 512x512 160000 - - 41.82 42.49 config model | log
DeepLabV3 R-50-D8 512x512 320000 - - 41.37 42.22 config model | log
DeepLabV3 R-101-D8 512x512 320000 - - 42.61 43.42 config model | log

Note:

  • FP16 means Mixed Precision (FP16) is adopted in training.