-
Notifications
You must be signed in to change notification settings - Fork 86
/
mountain_car.py
331 lines (273 loc) · 11.9 KB
/
mountain_car.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import os
import numpy as np
import matplotlib.pyplot as plt
import GPy
#import GPyOpt
#from GPyOpt.acquisitions import AcquisitionBase
from matplotlib import animation
from IPython.display import display, HTML
from pylab import cm
import mlai
import mlai.plot as plot
N_STEPS_MAX = 500
def make_multi_output_multi_fidelity_kernel(input_dim):
k_simulator = GPy.kern.Matern52(input_dim = input_dim, active_dims = list(range(input_dim)), ARD=True)
k_error = GPy.kern.Matern52(input_dim = input_dim, active_dims = list(range(input_dim)), ARD=True)
k_indicator = GPy.kern.Linear(input_dim = 1, active_dims = [input_dim])
# Some constraints on hyperparameters
k_indicator.variances.constrain_fixed(1)
k_indicator.variances.fix(1)
k_simulator.variance.constrain_bounded(1e-4, 10)
k_error.variance.constrain_bounded(1e-4, 10)
k_simulator.lengthscale.constrain_bounded(1e-4, 10)
k_error.lengthscale.constrain_bounded(1e-4, 10)
return k_simulator + k_indicator*k_error
def simulation(state):
"""Define a low fidelity simulation that returns the approximate car dynamics"""
power = 0.0015
max_speed = 0.07
min_position = -1.2
max_position = 0.6
position = state[0]
velocity = state[1]
action = state[2]
new_velocity = velocity + power*action - 0.0025*np.cos(3*position)
new_velocity = np.clip(new_velocity, -max_speed, max_speed)
d_velocity = new_velocity - velocity
new_position = position + new_velocity
new_position = np.clip(new_position, min_position, max_position)
d_position = new_position-position
return d_position, d_velocity
def low_cost_simulation(state):
"""Define a low fidelity simulation that returns the approximate car dynamics"""
# A corrupted version of the function above
power = 0.002
max_speed = 0.07
min_position = -1.2
max_position = 0.6
position = state[0]
velocity = state[1]
action = state[2]
d_velocity = power*action - 0.004*(np.cos(3.3*position - 0.3))**2 - 0.001
d_position = d_velocity
return d_position, d_velocity
# class AcquisitionPE(AcquisitionBase):
# """
# Pure Exploration acquisition function
# :param model: GPyOpt class of model
# :param space: GPyOpt class of domain
# :param optimizer: optimizer of the acquisition. Should be a GPyOpt optimizer
# :param cost_withGradients: function
# :param jitter: positive value to make the acquisition more explorative
# .. Note:: does not allow to be used with cost
# """
# analytical_gradient_prediction = True
# def __init__(self, model, space, optimizer=None, cost_withGradients=None):
# self.optimizer = optimizer
# super(AcquisitionPE, self).__init__(model, space, optimizer, cost_withGradients=cost_withGradients)
# def _compute_acq(self, x):
# """
# Computes the GP-Lower Confidence Bound
# """
# _, s = self.model.predict(x)
# return s
# def _compute_acq_withGradients(self, x):
# """
# Computes the GP-Lower Confidence Bound and its derivative
# """
# _, s, _, dsdx = self.model.predict_withGradients(x)
# f_acqu = s
# df_acqu = dsdx
# return f_acqu, df_acqu
def run_simulation(env, controller_gains, render=False):
# Reset environment to starting point
env.seed(0)
observation = env.reset()
# Initalise matrices to store state + control inputs
state_trajectory = np.ndarray((0, observation.shape[0]))
control_inputs = np.ndarray((0, env.action_space.shape[0]))
frames = []
cost = 0
for i in range(0, N_STEPS_MAX):
# Calculate control input
control_input = calculate_linear_control(observation, controller_gains)
if render:
frames.append(env.render(mode='rgb_array'))
# Save current state + control
state_trajectory = np.concatenate([state_trajectory, observation[np.newaxis, :]], axis=0)
control_inputs = np.concatenate([control_inputs, control_input[np.newaxis, :]])
observation, reward, done, info = env.step(control_input)
cost -= (reward - 1)
if done:
state_trajectory = np.concatenate([state_trajectory, observation[np.newaxis, :]], axis=0)
return cost, state_trajectory, control_inputs, frames
return cost, state_trajectory, control_inputs, frames
def run_emulation(dynamics_models, controller_gains, X_0, fidelity='single'):
observation = X_0.copy()
state_trajectory = np.ndarray((0, observation.shape[0]))*np.nan
control_inputs = np.ndarray((0, 1))*np.nan
cost = 0
for _ in range(0, N_STEPS_MAX):
# Evalute controller
control_input = calculate_linear_control(observation, controller_gains)
cost += (np.power(control_input[0], 2)*0.1 + 1)
# Store state + control
state_trajectory = np.concatenate([state_trajectory, observation[np.newaxis, :]], axis=0)
control_inputs = np.concatenate([control_inputs, control_input[np.newaxis, :]])
# Evalute emulator
gp_input = np.hstack([observation, control_input])[np.newaxis, :]
next_state_mean = evalute_model(dynamics_models[0], gp_input, fidelity)
observation[0] += next_state_mean
next_state_mean = evalute_model(dynamics_models[1], gp_input, fidelity)
observation[1] += next_state_mean
if observation[0] > 0.45:
state_trajectory = np.concatenate([state_trajectory, observation[np.newaxis, :]], axis=0)
return cost-100, state_trajectory, control_inputs
return cost, state_trajectory, control_inputs
def calculate_linear_control(state, gains):
control_input = (np.dot(gains[0, 0:2], state) + gains[0, 2])[np.newaxis]
return np.clip(control_input, -1, 1)
def add_data_to_gp(gp_model, new_x, new_y):
all_X = np.concatenate([gp_model.X, new_x])
all_y = np.concatenate([gp_model.Y, new_y])
gp_model.set_XY(all_X, all_y)
return gp_model
def make_gp_inputs(control_inputs, state_trajectory):
X = np.concatenate([state_trajectory[:-1, :], control_inputs], axis=1)
y = np.diff(state_trajectory, axis=0)
return X, y
def v_simulation(state):
state = state.copy().flatten()
power = 0.0015
max_speed = 0.07
min_position = -1.2
max_position = 0.6
position = state[0]
velocity = state[1]
action = state[2]
new_velocity = velocity + power*action - 0.0025*np.cos(3*position)
new_velocity = np.clip(new_velocity, -max_speed, max_speed)
d_velocity = new_velocity - velocity
new_position = position + new_velocity
new_position = np.clip(new_position, min_position, max_position)
d_position = new_position-position
return np.asarray([d_velocity])[np.newaxis, :]
class plot_control(object):
def __init__(self, velocity_emulator, fidelity='single'):
self.velocity_emulator = velocity_emulator
self.fidelity = fidelity
def plot_slices(self, control):
n_points_contour = 50
position_contour = np.linspace(-1.2, 0.6, n_points_contour)
velocity_contour = np.linspace(-0.07, 0.07, n_points_contour)
x_contour_grid = np.meshgrid(position_contour, velocity_contour)
x_contour = np.ones((n_points_contour**2, 3))*control
for i in range(0, len(x_contour_grid)):
x_contour[:, i] = x_contour_grid[i].flatten()
# Evalute emulator
y_emulator = evalute_model(self.velocity_emulator, x_contour, self.fidelity)
# Evalute simulator
y_simulator = np.zeros(x_contour.shape[0])
for i in range(0, x_contour.shape[0]):
y_simulator[i] = v_simulation(x_contour[i, :])
# Do plots
fig, ax = plt.subplots(1, 2, figsize=(12, 4))
ax[0].set_title('Acceleration from Emulator')
ax[0].contourf(position_contour, velocity_contour, np.reshape(y_emulator, (n_points_contour, n_points_contour)),cmap=cm.RdBu)
ax[1].set_title('Acceleration from Simulator')
ax[1].contourf(position_contour, velocity_contour, np.reshape(y_simulator, (n_points_contour, n_points_contour)),cmap=cm.RdBu)
plt.tight_layout()
ax[1].set_xlabel('Car Position')
#ax[1].set_ylabel('Car Velocity')
ax[0].set_xlabel('Car Position')
ax[0].set_ylabel('Car Velocity')
def evalute_deep_multi_fidelity(models, x):
y_lf = models[0].predict(x)[0]
x_hf = np.hstack((x.copy(), y_lf))
return models[1].predict(x_hf)[0]
def evalute_model(model, x, fidelity):
# Evalute emulator
if fidelity == 'single':
y = model.predict(x)[0]
elif fidelity == 'multi-linear':
x_extended = np.hstack([x, np.ones([x.shape[0], 1])])
y = model.predict(x_extended)[0]
elif fidelity == 'multi-deep':
y = evalute_deep_multi_fidelity(model, x)
return y
def create_deep_multi_fidelity_models(x, y1, y2):
"""
Function to create deep multi-fidelity models
"""
m1 = GPy.models.GPRegression(x.copy(), y1, kernel=GPy.kern.RBF(3))
m1.optimize_restarts(10, verbose=False);
mu1, _ = m1.predict(x)
XX = np.hstack((x.copy(), mu1))
## Make second model
n_dim = x.shape[1]
k2 = GPy.kern.RBF(1, active_dims = [n_dim])*GPy.kern.RBF(n_dim, active_dims=np.arange(0, n_dim)) \
+ GPy.kern.RBF(n_dim, active_dims=np.arange(0, n_dim))
m2 = GPy.models.GPRegression(XX, y2, kernel=k2)
m2.optimize_restarts(10, verbose=False)
return m1, m2
def animate_frames(frames, title=None):
"""
Converts a list of frames to an animation.
"""
fig, ax = plt.subplots(figsize=(frames[0].shape[1] / 72.0, frames[0].shape[0] / 72.0), dpi = 72)
fig.set_alpha(0.0)
if title is None:
ax.set_position([0, 0, 1, 1])
else:
ax.set_title(title)
ax.set_alpha(0.0)
patch = ax.imshow(frames[0])
plt.axis('off')
def animate(i):
patch.set_data(frames[i])
return animation.FuncAnimation(plt.gcf(), animate, frames = len(frames), interval=30)
#HTML(anim.to_jshtml())##display(display_animation(anim, default_mode='loop'))
#HTML(anim.to_html5_video())##display(display_animation(anim, default_mode='loop'))
def emu_sim_comparison(env, control_params, emulator, fidelity='single', max_steps=500, diagrams='../diagrams'):
"""Plot a comparison between the emulator and the simulator"""
reward, state_trajectory, control_inputs, _ = run_simulation(env, control_params)
reward_emu, state_trajectory_emu_mean, control_inputs_emu_mean = run_emulation(
emulator, control_params, state_trajectory[0, :].copy(), fidelity=fidelity)
fig, ax = plt.subplots(1, 3, figsize=plot.three_figsize)
x_axis = np.arange(0, max_steps)
x_axis_emu = np.arange(0, max_steps)
h1, = ax[0].plot(state_trajectory_emu_mean[:, 0])
h2, = ax[0].plot(state_trajectory[:, 0])
ax[0].set_title('Position')
ax[1].plot(state_trajectory_emu_mean[:,1])
ax[1].plot(state_trajectory[:,1])
ax[1].set_title('Velocity')
ax[2].plot(control_inputs_emu_mean)
ax[2].plot(control_inputs)
ax[2].set_title('Control Input')
fig.legend([h1,h2], ['Emulation', 'Simulation'], loc=4)
plt.tight_layout()
plt.show()
file_name = 'emu-sim-comparison.svg'
mlai.write_figure(file_name,
directory=diagrams,
figure=fig,
transparent=True)
def invert_frames(frames):
inverted = []
for fr in frames:
fr = fr/255.
shp = fr[:, :, 0].shape
a=np.ones(shp)
#a[np.logical_and(np.logical_and(fr[:, :, 0]==1.0,fr[:, :, 1]==1.0), fr[:, :, 2]==1.0)]=0.0
fr = (1.0-fr)
frn = np.zeros(shp + (4,))
frn[:, :, :3] = fr
frn[:, :, 3] = a
inverted.append(frn)
return inverted
def save_frames(frames, filename, diagrams='../diagrams', inverted=True):
if inverted:
frames = invert_frames(frames)
anim=animate_frames(frames)
mlai.write_animation_html(anim, filename, diagrams)