forked from MsRabbits/windows-FPN-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
189 lines (166 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import sys
sys.path.append('../')
import os
import tensorflow as tf
import numpy as np
import tensorflow.contrib.slim as slim
from libs.networks.network_factory import get_network_byname
from libs import build_rpn, build_head, build_fpn
from libs.box_utils.show_box_in_tensor import draw_boxes_with_scores, draw_boxes_with_categories_and_scores
from libs.box_utils.boxes_utils import batch_slice
from data.read_tfrecord import train_input_fn
from config import TCTConfig
from tools.run_meta import MetadataHook
from tools.eval_utils import compute_metric_ap
from libs.box_utils.boxes_utils import print_tensors
tf.logging.set_verbosity(tf.logging.INFO)
def model_fn(features,
labels,
mode,
params):
# ***********************************************************************************************
# * Backbone Net *
# ***********************************************************************************************
net_config = params["net_config"]
if mode == tf.estimator.ModeKeys.TRAIN:
IS_TRAINING = True
else:
IS_TRAINING = False
origin_image_batch = features["image"]
image_batch = origin_image_batch - tf.convert_to_tensor(net_config.PIXEL_MEANS, dtype=tf.float32)
image_window = features["image_window"]
# there is is_training means that bn is training, so it is important!
_, share_net = get_network_byname(net_name='resnet_v1_50',
inputs=image_batch,
num_classes=None,
is_training=True,
global_pool=True,
output_stride=None,
spatial_squeeze=True)
# ***********************************************************************************************
# * FPN *
# ***********************************************************************************************
feature_pyramid = build_fpn.build_feature_pyramid(share_net, net_config)
# ***********************************************************************************************
# * RPN *
# ***********************************************************************************************
gtboxes_and_label_batch = labels.get("gt_box_labels")
rpn = build_rpn.RPN(feature_pyramid=feature_pyramid,
image_window=image_window,
config=net_config)
# rpn_proposals_scores==(2000,)
rpn_proposals_boxes, rpn_proposals_scores = rpn.rpn_proposals(IS_TRAINING)
rpn_location_loss, rpn_classification_loss = rpn.rpn_losses(labels["minibatch_indices"],
labels["minibatch_encode_gtboxes"],
labels["minibatch_objects_one_hot"])
rpn_total_loss = rpn_classification_loss + rpn_location_loss
# ***********************************************************************************************
# * Fast RCNN Head *
# ***********************************************************************************************
fpn_fast_rcnn_head = build_head.FPNHead(feature_pyramid=feature_pyramid,
rpn_proposals_boxes=rpn_proposals_boxes,
origin_image=origin_image_batch,
gtboxes_and_label=gtboxes_and_label_batch,
config=net_config,
is_training=False,
image_window=image_window)
detections = fpn_fast_rcnn_head.head_detection()
if net_config.DEBUG:
print_tensors(rpn_proposals_scores[0,:50],"scores")
print_tensors(rpn_proposals_boxes[0, :50, :], "bbox")
rpn_proposals_vision = draw_boxes_with_scores(origin_image_batch[0, :, :, :],
rpn_proposals_boxes[0, :50, :],
rpn_proposals_scores[0, :50])
head_vision = draw_boxes_with_categories_and_scores(origin_image_batch[0, :, :, :],
detections[0, :, :4],
detections[0, :, 4],
detections[0, :, 5],
net_config.LABEL_TO_NAME)
tf.summary.image("rpn_proposals_vision", rpn_proposals_vision)
tf.summary.image("head_vision", head_vision)
head_location_loss, head_classification_loss = fpn_fast_rcnn_head.head_loss()
head_total_loss = head_location_loss + head_classification_loss
# train
with tf.name_scope("regularization_losses"):
regularization_list = [tf.nn.l2_loss(w.read_value()) *
net_config.WEIGHT_DECAY / tf.cast(tf.size(w.read_value()),
tf.float32) for w in tf.trainable_variables() if 'gamma' not
in w.name and 'beta' not in w.name]
regularization_loss = tf.add_n(regularization_list)
total_loss = regularization_loss + head_total_loss + rpn_total_loss
total_loss = tf.cond(tf.is_nan(total_loss),lambda:0.0,lambda:total_loss)
print_tensors(head_total_loss,"head_loss")
print_tensors(rpn_total_loss,"rpn_loss")
global_step = tf.train.get_or_create_global_step()
tf.train.init_from_checkpoint(net_config.CHECKPOINT_DIR,
{net_config.BACKBONE_NET + "/": net_config.BACKBONE_NET + "/"})
with tf.name_scope("optimizer"):
lr = tf.train.piecewise_constant(global_step,
boundaries=[np.int64(net_config.BOUNDARY[0])],
values=[net_config.LEARNING_RATE, net_config.LEARNING_RATE / 10])
optimizer = tf.train.MomentumOptimizer(lr, momentum=net_config.MOMENTUM)
optimizer = tf.contrib.estimator.TowerOptimizer(optimizer)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies([tf.group(*update_ops)]):
grads = optimizer.compute_gradients(total_loss)
# clip gradients
grads = tf.contrib.training.clip_gradient_norms(grads, net_config.CLIP_GRADIENT_NORM)
train_op = optimizer.apply_gradients(grads, global_step)
# ***********************************************************************************************
# * Summary *
# ***********************************************************************************************
# rpn loss and image
tf.summary.scalar('rpn_location_loss', rpn_location_loss, family="rpn_loss")
tf.summary.scalar('rpn_classification_loss', rpn_classification_loss, family="rpn_loss")
tf.summary.scalar('rpn_total_loss', rpn_total_loss, family="rpn_loss")
tf.summary.scalar('head_location_loss', head_location_loss, family="head_loss")
tf.summary.scalar('head_classification_loss', head_classification_loss, family="head_loss")
tf.summary.scalar('head_total_loss', head_total_loss, family="head_loss")
tf.summary.scalar("regularization_loss", regularization_loss)
tf.summary.scalar('total_loss', total_loss)
tf.summary.scalar('learning_rate', lr)
meta_hook = MetadataHook(save_steps=net_config.SAVE_EVERY_N_STEP * net_config.EPOCH / 2,
output_dir=net_config.MODLE_DIR)
summary_hook = tf.train.SummarySaverHook(save_steps=net_config.SAVE_EVERY_N_STEP,
output_dir=net_config.MODLE_DIR,
summary_op=tf.summary.merge_all())
hooks = [summary_hook]
if net_config.COMPUTE_TIME:
hooks.append(meta_hook)
if mode == tf.estimator.ModeKeys.TRAIN:
return tf.estimator.EstimatorSpec(mode, loss=total_loss,
train_op=train_op,
training_hooks=hooks)
# ***********************************************************************************************
# * EVAL *
# ***********************************************************************************************
metric_ap_dict = batch_slice([features["gt_box_labels"][:,:,:4],
features["gt_box_labels"][:, :, 4],
detections[:, :, :4],
detections[:, :, 4],
detections[:, :, 5]],
lambda x, y, z, u, v: compute_metric_ap(x, y, z, u, v, net_config),
net_config.PER_GPU_IMAGE)
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(mode, loss=total_loss,
eval_metric_ops=metric_ap_dict)
if __name__ == "__main__":
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
net_config = TCTConfig()
session_config = tf.ConfigProto()
session_config.gpu_options.allow_growth = True
session_config.allow_soft_placement = True
estimator_config = tf.estimator.RunConfig(model_dir=os.path.join(net_config.MODLE_DIR, net_config.NET_NAME),
log_step_count_steps=200,
save_summary_steps=net_config.SAVE_EVERY_N_STEP,
save_checkpoints_steps=net_config.SAVE_EVERY_N_STEP,
session_config=session_config)
my_estimator = tf.estimator.Estimator(tf.contrib.estimator.replicate_model_fn(model_fn,
devices=net_config.GPU_GROUPS),
params={"net_config": net_config},
config=estimator_config)
my_estimator.train(input_fn=lambda: train_input_fn(net_config))