In order to replicate the results smoothly and avoid dependency errors (aka CUDA installation hell) you can use Docker combined with NVIDIA-Docker. Docker will install all the packages in an isolated environment.
Note: You will need an NVIDIA GPU and a Linux OS to use NVIDIA-Docker.
-
Download the
frames
andmasks
folders from here and place them on thedemo
folder. -
Download the files
FlowNet2_checkpoint.pth.tar
,imagenet_deepfill.pth
andresnet101_movie.pth
from here and place them inpretrained_models
.
├── demo
│ ├── frames
│ └── masks
├── pretrained_models
│ ├── FlowNet2_checkpoint.pth.tar
│ ├── imagenet_deepfill.pth
│ └── resnet101_movie.pth
-
From the
docker
folder run:docker-compose up -d
-
Access the conatiner:
docker exec -it inpainting bash
That will open a CLI on the Docker container. Now you can run the demo scripts, for example:
python3 tools/video_inpaint.py --frame_dir ./demo/frames --MASK_ROOT ./demo/masks --img_size 512 832 --FlowNet2 --DFC --ResNet101 --Propagation
Tested on Ubuntu 18.04 with a GTX 1060 GPU (drivers 410.104). Not working on higher architectures such as sm_75 (Turing), e.g. RTX 2080 Ti