forked from piergiaj/pytorch-i3d
-
Notifications
You must be signed in to change notification settings - Fork 1
/
charades_dataset.py
125 lines (98 loc) · 3.58 KB
/
charades_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.utils.data as data_utl
from torch.utils.data.dataloader import default_collate
import numpy as np
import json
import csv
import h5py
import random
import os
import os.path
import cv2
def video_to_tensor(pic):
"""Convert a ``numpy.ndarray`` to tensor.
Converts a numpy.ndarray (T x H x W x C)
to a torch.FloatTensor of shape (C x T x H x W)
Args:
pic (numpy.ndarray): Video to be converted to tensor.
Returns:
Tensor: Converted video.
"""
return torch.from_numpy(pic.transpose([3,0,1,2]))
def load_rgb_frames(image_dir, vid, start, num):
frames = []
for i in range(start, start+num):
img = cv2.imread(os.path.join(image_dir, vid, vid+'-'+str(i).zfill(6)+'.jpg'))[:, :, [2, 1, 0]]
w,h,c = img.shape
if w < 226 or h < 226:
d = 226.-min(w,h)
sc = 1+d/min(w,h)
img = cv2.resize(img,dsize=(0,0),fx=sc,fy=sc)
img = (img/255.)*2 - 1
frames.append(img)
return np.asarray(frames, dtype=np.float32)
def load_flow_frames(image_dir, vid, start, num):
frames = []
for i in range(start, start+num):
imgx = cv2.imread(os.path.join(image_dir, vid, vid+'-'+str(i).zfill(6)+'x.jpg'), cv2.IMREAD_GRAYSCALE)
imgy = cv2.imread(os.path.join(image_dir, vid, vid+'-'+str(i).zfill(6)+'y.jpg'), cv2.IMREAD_GRAYSCALE)
w,h = imgx.shape
if w < 224 or h < 224:
d = 224.-min(w,h)
sc = 1+d/min(w,h)
imgx = cv2.resize(imgx,dsize=(0,0),fx=sc,fy=sc)
imgy = cv2.resize(imgy,dsize=(0,0),fx=sc,fy=sc)
imgx = (imgx/255.)*2 - 1
imgy = (imgy/255.)*2 - 1
img = np.asarray([imgx, imgy]).transpose([1,2,0])
frames.append(img)
return np.asarray(frames, dtype=np.float32)
def make_dataset(split_file, split, root, mode, num_classes=157):
dataset = []
with open(split_file, 'r') as f:
data = json.load(f)
i = 0
for vid in data.keys():
if data[vid]['subset'] != split:
continue
if not os.path.exists(os.path.join(root, vid)):
continue
num_frames = len(os.listdir(os.path.join(root, vid)))
if mode == 'flow':
num_frames = num_frames//2
if num_frames < 66:
continue
label = np.zeros((num_classes,num_frames), np.float32)
fps = num_frames/data[vid]['duration']
for ann in data[vid]['actions']:
for fr in range(0,num_frames,1):
if fr/fps > ann[1] and fr/fps < ann[2]:
label[ann[0], fr] = 1 # binary classification
dataset.append((vid, label, data[vid]['duration'], num_frames))
i += 1
return dataset
class Charades(data_utl.Dataset):
def __init__(self, split_file, split, root, mode, transforms=None):
self.data = make_dataset(split_file, split, root, mode)
self.split_file = split_file
self.transforms = transforms
self.mode = mode
self.root = root
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
vid, label, dur, nf = self.data[index]
start_f = random.randint(1,nf-65)
if self.mode == 'rgb':
imgs = load_rgb_frames(self.root, vid, start_f, 64)
else:
imgs = load_flow_frames(self.root, vid, start_f, 64)
label = label[:, start_f:start_f+64]
imgs = self.transforms(imgs)
return video_to_tensor(imgs), torch.from_numpy(label)
def __len__(self):
return len(self.data)