-
-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
operations.cc
475 lines (433 loc) · 15.6 KB
/
operations.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
// Copyright 2013 Lovell Fuller and others.
// SPDX-License-Identifier: Apache-2.0
#include <algorithm>
#include <functional>
#include <memory>
#include <tuple>
#include <vector>
#include <vips/vips8>
#include "common.h"
#include "operations.h"
using vips::VImage;
using vips::VError;
namespace sharp {
/*
* Tint an image using the provided RGB.
*/
VImage Tint(VImage image, std::vector<double> const tint) {
std::vector<double> const tintLab = (VImage::black(1, 1) + tint)
.colourspace(VIPS_INTERPRETATION_LAB, VImage::option()->set("source_space", VIPS_INTERPRETATION_sRGB))
.getpoint(0, 0);
// LAB identity function
VImage identityLab = VImage::identity(VImage::option()->set("bands", 3))
.colourspace(VIPS_INTERPRETATION_LAB, VImage::option()->set("source_space", VIPS_INTERPRETATION_sRGB));
// Scale luminance range, 0.0 to 1.0
VImage l = identityLab[0] / 100;
// Weighting functions
VImage weightL = 1.0 - 4.0 * ((l - 0.5) * (l - 0.5));
VImage weightAB = (weightL * tintLab).extract_band(1, VImage::option()->set("n", 2));
identityLab = identityLab[0].bandjoin(weightAB);
// Convert lookup table to sRGB
VImage lut = identityLab.colourspace(VIPS_INTERPRETATION_sRGB,
VImage::option()->set("source_space", VIPS_INTERPRETATION_LAB));
// Original colourspace
VipsInterpretation typeBeforeTint = image.interpretation();
if (typeBeforeTint == VIPS_INTERPRETATION_RGB) {
typeBeforeTint = VIPS_INTERPRETATION_sRGB;
}
// Apply lookup table
if (HasAlpha(image)) {
VImage alpha = image[image.bands() - 1];
image = RemoveAlpha(image)
.colourspace(VIPS_INTERPRETATION_B_W)
.maplut(lut)
.colourspace(typeBeforeTint)
.bandjoin(alpha);
} else {
image = image
.colourspace(VIPS_INTERPRETATION_B_W)
.maplut(lut)
.colourspace(typeBeforeTint);
}
return image;
}
/*
* Stretch luminance to cover full dynamic range.
*/
VImage Normalise(VImage image, int const lower, int const upper) {
// Get original colourspace
VipsInterpretation typeBeforeNormalize = image.interpretation();
if (typeBeforeNormalize == VIPS_INTERPRETATION_RGB) {
typeBeforeNormalize = VIPS_INTERPRETATION_sRGB;
}
// Convert to LAB colourspace
VImage lab = image.colourspace(VIPS_INTERPRETATION_LAB);
// Extract luminance
VImage luminance = lab[0];
// Find luminance range
int const min = lower == 0 ? luminance.min() : luminance.percent(lower);
int const max = upper == 100 ? luminance.max() : luminance.percent(upper);
if (std::abs(max - min) > 1) {
// Extract chroma
VImage chroma = lab.extract_band(1, VImage::option()->set("n", 2));
// Calculate multiplication factor and addition
double f = 100.0 / (max - min);
double a = -(min * f);
// Scale luminance, join to chroma, convert back to original colourspace
VImage normalized = luminance.linear(f, a).bandjoin(chroma).colourspace(typeBeforeNormalize);
// Attach original alpha channel, if any
if (HasAlpha(image)) {
// Extract original alpha channel
VImage alpha = image[image.bands() - 1];
// Join alpha channel to normalised image
return normalized.bandjoin(alpha);
} else {
return normalized;
}
}
return image;
}
/*
* Contrast limiting adapative histogram equalization (CLAHE)
*/
VImage Clahe(VImage image, int const width, int const height, int const maxSlope) {
return image.hist_local(width, height, VImage::option()->set("max_slope", maxSlope));
}
/*
* Gamma encoding/decoding
*/
VImage Gamma(VImage image, double const exponent) {
if (HasAlpha(image)) {
// Separate alpha channel
VImage alpha = image[image.bands() - 1];
return RemoveAlpha(image).gamma(VImage::option()->set("exponent", exponent)).bandjoin(alpha);
} else {
return image.gamma(VImage::option()->set("exponent", exponent));
}
}
/*
* Flatten image to remove alpha channel
*/
VImage Flatten(VImage image, std::vector<double> flattenBackground) {
double const multiplier = sharp::Is16Bit(image.interpretation()) ? 256.0 : 1.0;
std::vector<double> background {
flattenBackground[0] * multiplier,
flattenBackground[1] * multiplier,
flattenBackground[2] * multiplier
};
return image.flatten(VImage::option()->set("background", background));
}
/**
* Produce the "negative" of the image.
*/
VImage Negate(VImage image, bool const negateAlpha) {
if (HasAlpha(image) && !negateAlpha) {
// Separate alpha channel
VImage alpha = image[image.bands() - 1];
return RemoveAlpha(image).invert().bandjoin(alpha);
} else {
return image.invert();
}
}
/*
* Gaussian blur. Use sigma of -1.0 for fast blur.
*/
VImage Blur(VImage image, double const sigma, VipsPrecision precision, double const minAmpl) {
if (sigma == -1.0) {
// Fast, mild blur - averages neighbouring pixels
VImage blur = VImage::new_matrixv(3, 3,
1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0, 1.0);
blur.set("scale", 9.0);
return image.conv(blur);
} else {
// Slower, accurate Gaussian blur
return StaySequential(image).gaussblur(sigma, VImage::option()
->set("precision", precision)
->set("min_ampl", minAmpl));
}
}
/*
* Convolution with a kernel.
*/
VImage Convolve(VImage image, int const width, int const height,
double const scale, double const offset,
std::vector<double> const &kernel_v
) {
VImage kernel = VImage::new_from_memory(
static_cast<void*>(const_cast<double*>(kernel_v.data())),
width * height * sizeof(double),
width,
height,
1,
VIPS_FORMAT_DOUBLE);
kernel.set("scale", scale);
kernel.set("offset", offset);
return image.conv(kernel);
}
/*
* Recomb with a Matrix of the given bands/channel size.
* Eg. RGB will be a 3x3 matrix.
*/
VImage Recomb(VImage image, std::vector<double> const& matrix) {
double* m = const_cast<double*>(matrix.data());
image = image.colourspace(VIPS_INTERPRETATION_sRGB);
if (matrix.size() == 9) {
return image
.recomb(image.bands() == 3
? VImage::new_matrix(3, 3, m, 9)
: VImage::new_matrixv(4, 4,
m[0], m[1], m[2], 0.0,
m[3], m[4], m[5], 0.0,
m[6], m[7], m[8], 0.0,
0.0, 0.0, 0.0, 1.0));
} else {
return image.recomb(VImage::new_matrix(4, 4, m, 16));
}
}
VImage Modulate(VImage image, double const brightness, double const saturation,
int const hue, double const lightness) {
VipsInterpretation colourspaceBeforeModulate = image.interpretation();
if (HasAlpha(image)) {
// Separate alpha channel
VImage alpha = image[image.bands() - 1];
return RemoveAlpha(image)
.colourspace(VIPS_INTERPRETATION_LCH)
.linear(
{ brightness, saturation, 1},
{ lightness, 0.0, static_cast<double>(hue) }
)
.colourspace(colourspaceBeforeModulate)
.bandjoin(alpha);
} else {
return image
.colourspace(VIPS_INTERPRETATION_LCH)
.linear(
{ brightness, saturation, 1 },
{ lightness, 0.0, static_cast<double>(hue) }
)
.colourspace(colourspaceBeforeModulate);
}
}
/*
* Sharpen flat and jagged areas. Use sigma of -1.0 for fast sharpen.
*/
VImage Sharpen(VImage image, double const sigma, double const m1, double const m2,
double const x1, double const y2, double const y3) {
if (sigma == -1.0) {
// Fast, mild sharpen
VImage sharpen = VImage::new_matrixv(3, 3,
-1.0, -1.0, -1.0,
-1.0, 32.0, -1.0,
-1.0, -1.0, -1.0);
sharpen.set("scale", 24.0);
return image.conv(sharpen);
} else {
// Slow, accurate sharpen in LAB colour space, with control over flat vs jagged areas
VipsInterpretation colourspaceBeforeSharpen = image.interpretation();
if (colourspaceBeforeSharpen == VIPS_INTERPRETATION_RGB) {
colourspaceBeforeSharpen = VIPS_INTERPRETATION_sRGB;
}
return image
.sharpen(VImage::option()
->set("sigma", sigma)
->set("m1", m1)
->set("m2", m2)
->set("x1", x1)
->set("y2", y2)
->set("y3", y3))
.colourspace(colourspaceBeforeSharpen);
}
}
VImage Threshold(VImage image, double const threshold, bool const thresholdGrayscale) {
if (!thresholdGrayscale) {
return image >= threshold;
}
return image.colourspace(VIPS_INTERPRETATION_B_W) >= threshold;
}
/*
Perform boolean/bitwise operation on image color channels - results in one channel image
*/
VImage Bandbool(VImage image, VipsOperationBoolean const boolean) {
image = image.bandbool(boolean);
return image.copy(VImage::option()->set("interpretation", VIPS_INTERPRETATION_B_W));
}
/*
Perform bitwise boolean operation between images
*/
VImage Boolean(VImage image, VImage imageR, VipsOperationBoolean const boolean) {
return image.boolean(imageR, boolean);
}
/*
Trim an image
*/
VImage Trim(VImage image, std::vector<double> background, double threshold, bool const lineArt) {
if (image.width() < 3 && image.height() < 3) {
throw VError("Image to trim must be at least 3x3 pixels");
}
if (background.size() == 0) {
// Top-left pixel provides the default background colour if none is given
background = image.extract_area(0, 0, 1, 1)(0, 0);
} else if (sharp::Is16Bit(image.interpretation())) {
for (size_t i = 0; i < background.size(); i++) {
background[i] *= 256.0;
}
threshold *= 256.0;
}
std::vector<double> backgroundAlpha({ background.back() });
if (HasAlpha(image)) {
background.pop_back();
} else {
background.resize(image.bands());
}
int left, top, width, height;
left = image.find_trim(&top, &width, &height, VImage::option()
->set("background", background)
->set("line_art", lineArt)
->set("threshold", threshold));
if (HasAlpha(image)) {
// Search alpha channel (A)
int leftA, topA, widthA, heightA;
VImage alpha = image[image.bands() - 1];
leftA = alpha.find_trim(&topA, &widthA, &heightA, VImage::option()
->set("background", backgroundAlpha)
->set("line_art", lineArt)
->set("threshold", threshold));
if (widthA > 0 && heightA > 0) {
if (width > 0 && height > 0) {
// Combined bounding box (B)
int const leftB = std::min(left, leftA);
int const topB = std::min(top, topA);
int const widthB = std::max(left + width, leftA + widthA) - leftB;
int const heightB = std::max(top + height, topA + heightA) - topB;
return image.extract_area(leftB, topB, widthB, heightB);
} else {
// Use alpha only
return image.extract_area(leftA, topA, widthA, heightA);
}
}
}
if (width > 0 && height > 0) {
return image.extract_area(left, top, width, height);
}
return image;
}
/*
* Calculate (a * in + b)
*/
VImage Linear(VImage image, std::vector<double> const a, std::vector<double> const b) {
size_t const bands = static_cast<size_t>(image.bands());
if (a.size() > bands) {
throw VError("Band expansion using linear is unsupported");
}
bool const uchar = !Is16Bit(image.interpretation());
if (HasAlpha(image) && a.size() != bands && (a.size() == 1 || a.size() == bands - 1 || bands - 1 == 1)) {
// Separate alpha channel
VImage alpha = image[bands - 1];
return RemoveAlpha(image).linear(a, b, VImage::option()->set("uchar", uchar)).bandjoin(alpha);
} else {
return image.linear(a, b, VImage::option()->set("uchar", uchar));
}
}
/*
* Unflatten
*/
VImage Unflatten(VImage image) {
if (HasAlpha(image)) {
VImage alpha = image[image.bands() - 1];
VImage noAlpha = RemoveAlpha(image);
return noAlpha.bandjoin(alpha & (noAlpha.colourspace(VIPS_INTERPRETATION_B_W) < 255));
} else {
return image.bandjoin(image.colourspace(VIPS_INTERPRETATION_B_W) < 255);
}
}
/*
* Ensure the image is in a given colourspace
*/
VImage EnsureColourspace(VImage image, VipsInterpretation colourspace) {
if (colourspace != VIPS_INTERPRETATION_LAST && image.interpretation() != colourspace) {
image = image.colourspace(colourspace,
VImage::option()->set("source_space", image.interpretation()));
}
return image;
}
/*
* Split and crop each frame, reassemble, and update pageHeight.
*/
VImage CropMultiPage(VImage image, int left, int top, int width, int height,
int nPages, int *pageHeight) {
if (top == 0 && height == *pageHeight) {
// Fast path; no need to adjust the height of the multi-page image
return image.extract_area(left, 0, width, image.height());
} else {
std::vector<VImage> pages;
pages.reserve(nPages);
// Split the image into cropped frames
image = StaySequential(image);
for (int i = 0; i < nPages; i++) {
pages.push_back(
image.extract_area(left, *pageHeight * i + top, width, height));
}
// Reassemble the frames into a tall, thin image
VImage assembled = VImage::arrayjoin(pages,
VImage::option()->set("across", 1));
// Update the page height
*pageHeight = height;
return assembled;
}
}
/*
* Split into frames, embed each frame, reassemble, and update pageHeight.
*/
VImage EmbedMultiPage(VImage image, int left, int top, int width, int height,
VipsExtend extendWith, std::vector<double> background, int nPages, int *pageHeight) {
if (top == 0 && height == *pageHeight) {
// Fast path; no need to adjust the height of the multi-page image
return image.embed(left, 0, width, image.height(), VImage::option()
->set("extend", extendWith)
->set("background", background));
} else if (left == 0 && width == image.width()) {
// Fast path; no need to adjust the width of the multi-page image
std::vector<VImage> pages;
pages.reserve(nPages);
// Rearrange the tall image into a vertical grid
image = image.grid(*pageHeight, nPages, 1);
// Do the embed on the wide image
image = image.embed(0, top, image.width(), height, VImage::option()
->set("extend", extendWith)
->set("background", background));
// Split the wide image into frames
for (int i = 0; i < nPages; i++) {
pages.push_back(
image.extract_area(width * i, 0, width, height));
}
// Reassemble the frames into a tall, thin image
VImage assembled = VImage::arrayjoin(pages,
VImage::option()->set("across", 1));
// Update the page height
*pageHeight = height;
return assembled;
} else {
std::vector<VImage> pages;
pages.reserve(nPages);
// Split the image into frames
for (int i = 0; i < nPages; i++) {
pages.push_back(
image.extract_area(0, *pageHeight * i, image.width(), *pageHeight));
}
// Embed each frame in the target size
for (int i = 0; i < nPages; i++) {
pages[i] = pages[i].embed(left, top, width, height, VImage::option()
->set("extend", extendWith)
->set("background", background));
}
// Reassemble the frames into a tall, thin image
VImage assembled = VImage::arrayjoin(pages,
VImage::option()->set("across", 1));
// Update the page height
*pageHeight = height;
return assembled;
}
}
} // namespace sharp