-
Notifications
You must be signed in to change notification settings - Fork 58
/
keras_mnist.py
105 lines (89 loc) · 3.63 KB
/
keras_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from __future__ import print_function
import argparse
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
import math
import tensorflow as tf
from kungfu.python import current_cluster_size, current_rank
from kungfu.tensorflow.initializer import BroadcastGlobalVariablesCallback
from kungfu.tensorflow.optimizers import (SynchronousAveragingOptimizer,
SynchronousSGDOptimizer,
PairAveragingOptimizer)
parser = argparse.ArgumentParser(description='Keras MNIST example.')
parser.add_argument('--kf-optimizer',
type=str,
default='sync-sgd',
help='kungfu optimizer')
args = parser.parse_args()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
K.set_session(tf.Session(config=config))
batch_size = 128
num_classes = 10
# KungFu: adjust number of epochs based on number of GPUs.
epochs = int(math.ceil(4.0 / current_cluster_size()))
# Input image dimensions
img_rows, img_cols = 28, 28
# The data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(
Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# KungFu: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * current_cluster_size())
# KungFu: wrap distributed optimizers.
if args.kf_optimizer == 'sync-sgd':
opt = SynchronousSGDOptimizer(opt, with_keras=True)
elif args.kf_optimizer == 'async-sgd':
opt = PairAveragingOptimizer(opt, with_keras=True)
elif args.kf_optimizer == 'sma':
opt = SynchronousAveragingOptimizer(opt, with_keras=True)
else:
raise RuntimeError('unknown optimizer: %s' % name)
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=opt,
metrics=['accuracy'])
callbacks = [BroadcastGlobalVariablesCallback(with_keras=True)]
# KungFu: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if current_rank() == 0:
callbacks.append(
keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5'))
model.fit(x_train,
y_train,
batch_size=batch_size,
callbacks=callbacks,
epochs=epochs,
verbose=1 if current_rank() == 0 else 0,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])