-
Notifications
You must be signed in to change notification settings - Fork 1
/
primes.s
460 lines (380 loc) · 10.3 KB
/
primes.s
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
* Copyright (C) 2020 Lucas Ransan <[email protected]>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/* This program uses the sieve of Eratosthenes
(https://wikipedia.org/wiki/Sieve_of_Eratosthenes)
to print all the primes up to and including the argument num.
We use a bit array to represent all the numbers from 0 to num.
The first bit represents 0, the second 1, the third 2, ...
A set bit represents a prime number, so after eliminating all
the non primes, the bit array should look like that:
001101010001010001010...
*/
/* Length of the buffer for writing to stdout */
.set BUF_LEN, 2048000 # 2 MB
/* Initialized memory */
.data
arg_err:
.ascii "Please supply one argument\n"
.set ae_len, . - arg_err
num_err:
.ascii "Please supply a valid number > 0\n"
.set ne_len, . - num_err
alloc_err:
.ascii "Failed to allocate memory\n"
.set alle_len, . - alloc_err
/* Uninitialized memory */
.bss
/* 64 bit unsigned integer we print primes up to */
num:
.quad 0
/* Square root of num */
sqrt_num:
.quad 0
/* Address to the sys_mmap'ed bit array */
primes:
.quad 0
/* The buffer for writing to stdout */
char_buf:
.fill BUF_LEN
.globl _start
.text
_start:
/* Read argc and jump if it is 2 (program name + number)
(%rsp) = argc
8(%rsp) = argv[0]
16(%rsp) = argv[1]
*/
movq (%rsp), %rbx
cmpq $2, %rbx
je .argc_good
/* Write error to stderr */
movq $1, %rax # sys_write
movq $2, %rdi # fd
movq $arg_err, %rsi # buf
movq $ae_len, %rdx # count
syscall
/* Exit with code 1 */
movq $60, %rax # sys_exit
movq $1, %rdi # error_code
syscall
.argc_good:
/* Read the number for argv[1] */
movq 16(%rsp), %rdi # str = argv[1]
xorq %rax, %rax
xorq %rbx, %rbx
movq $10, %rcx
decq %rdi
.arg_loop:
incq %rdi
movb (%rdi), %bl
testb %bl, %bl
jz .end_arg
/* Ignore '_' */
cmpb $0x5F, %bl
jz .arg_loop
/* Fail if characted is not a digit */
subb $0x30, %bl
js .number_bad
cmpb $10, %bl
jnc .number_bad
mulq %rcx
addq %rbx, %rax
jmp .arg_loop
.end_arg:
/* Store the result in num and jump if != 0 */
movq %rax, num
testq %rax, %rax
jnz .number_good
.number_bad:
/* Write error to stderr */
movq $1, %rax # sys_write
movq $2, %rdi # fd
movq $num_err, %rsi # buf
movq $ne_len, %rdx # count
syscall
/* Exit with code 1 */
movq $60, %rax # sys_exit
movq $1, %rdi # error_code
syscall
.number_good:
/* If num == 1, we can jump to the end,
because we know 1 isn't prime.
*/
cmpq $1, num
je .finish
/* Allocate memory for num + 1 (0, 1, 2, ..., num) bits,
which is num / 8 + 1 bytes.
*/
movq $9, %rax # sys_mmap
xorq %rdi, %rdi # addr = null
movq num, %rsi
shrq $3, %rsi
incq %rsi # len = n / 8 + 1
movq $3, %rdx # prot = read | write
movq $0x22, %r10 # flags = private | anonymous
movq $-1, %r8 # fd
xorq %r9, %r9 # offset
syscall
/* Check if successful (%rax >= 0) */
testq %rax, %rax
jns .successful_alloc
/* Write error to stderr */
movq $1, %rax # sys_write
movq $2, %rdi # fd
movq $alloc_err, %rsi # buf
movq $alle_len, %rdx # count
syscall
/* Exit with code 1 */
movq $60, %rax # sys_exit
movq $1, %rdi # error_code
syscall
.successful_alloc:
/* Store the address of the allocated memory in primes and %r15 */
movq %rax, primes
movq %rax, %r15
/* Set 2, 3, 5, and 7 as potential primes */
movq primes, %rdi
movb $0b00110101, (%rdi)
movq num, %rdx
shrq $3, %rdx # num = num / 8
/* If num < 8, we can skip eliminating primes */
jz .end_elim
/* Set all odds as potential primes */
.memset_loop:
incq %rdi
movb $0b01010101, (%rdi)
decq %rdx
jnz .memset_loop
/* Calculate the square root of num with the FPU (rounded down) */
push num
fildq (%rsp)
fsqrt
fistpq (%rsp)
pop sqrt_num
/* We eliminate all non primes by setting
the correponding bit to 0 in the bit array.
%rbx: counter from 3 to sqrt_num incremented by 2
*/
movq $1, %rbx
.elim_loop:
addq $2, %rbx
cmpq sqrt_num, %rbx
ja .end_elim
/* If the bit corresponding to the number in the counter
isn't set, we jumpt to the start of the loop (.elim_loop).
*/
movq %rbx, %rax
shrq $3, %rax # %rax = %rbx / 8
/* These are two different ways to check a particular bit.
There is no speed difference.
*/
.if 1
/* Use the bit test instruction */
movq %rbx, %rdx
andw $0b111, %dx # %dx = %rbx % 8
movw $7, %cx
subw %dx, %cx # %cx = 7 - %dx
btw %cx, (%r15, %rax)
jnc .elim_loop
.else
/* primes[%rbx / 8] >> (7 - %rbx % 8) */
movb (%r15, %rax), %al # %al = primes[%rax]
movq %rbx, %rdx
andb $0b111, %dl # %dl = %rbx % 8
movb $7, %cl
subb %dl, %cl # %cl = 7 - %dl
shrb %cl, %al # %al >>= %cl
andb $1, %al
jz .elim_loop
.endif
/* The bit corresponding to %rbx is set, so we eliminate
(set to 0) all multiples of %rbx.
We only need to eliminate odds multiples of %rbx,
because we didn't set the evens to 1 in the first place.
odd * odd = odd
_ * _ = even
%r8: counter from 3 to num incremented by 2
*/
movq $1, %r8
.inner_loop:
addq $2, %r8
movq %r8, %rax
mulq %rbx # %rax = %r8 * %rbx
cmpq num, %rax
ja .end_inner
movq %rax, %rdx
shrq $3, %rdx # %rdx = %rax / 8
/* These are two ways to set a particular bit to 0.
The first way is way slower, despite being simpler.
*/
.if 0
andw $0b111, %ax # %ax = %rax % 8
movw $7, %cx
subw %ax, %cx # %cx = 7 - %ax
btrw %cx, (%r15, %rdx)
.else
/* primes[%r8 * %rbx / 8] &= ~(1 << (7 - (%r8 * %rbx) % 8)) */
movb (%r15, %rdx), %r10b # %r10b = primes[%rdx]
andb $0b111, %al # %al = %rax % 8
movb $7, %cl
subb %al, %cl # %cl = 7 - %al
movb $1, %r11b
shlb %cl, %r11b
notb %r11b # %r11b = ~(1 << %cl)
andb %r11b, %r10b
movb %r10b, (%r15, %rdx) # primes[%rdx] = %r10b & %r11b
.endif
jmp .inner_loop
.end_inner:
jmp .elim_loop
.end_elim:
/* Now that all the bits corresponding to primes are set to 1,
and the others are set to 0, we can start to fill the buffer!
Fill it with "2\n" here, because we don't deal with
even numbers in the loop.
*/
xorq %r13, %r13
movb $0x32, char_buf # '2'
incq %r13
movb $0xA, char_buf(%r13) # '\n'
incq %r13
/* We loop through the odds numbers and check if it is prime.
If it is, we can fill the buffer with its decimal representation.
%rbx: counter from 3 to num incremented by 2
*/
movq $1, %rbx
.print_loop:
addq $2, %rbx
cmpq num, %rbx
ja .end_print
/* If the bit corresponding to the number in the counter
isn't set, we jumpt to the start of the loop (.print_loop).
*/
movq %rbx, %rax
shrq $3, %rax # %rax = %rbx / 8
/* These are two different ways to check a particular bit.
The second way is slightly faster somehow, despite both
ways being no different to the ones earlier.
*/
.if 0
/* Use the bit test instruction */
movq %rbx, %rdx
andw $0b111, %dx # %dx = %rbx % 8
movw $7, %cx
subw %dx, %cx # %cx = 7 - %dx
btw %cx, (%r15, %rax)
jnc .print_loop
.else
/* primes[%rbx / 8] >> (7 - %rbx % 8) */
movb (%r15, %rax), %al # %al = primes[%rax]
movq %rbx, %rdx
andb $0b111, %dl # %dl = %rbx % 8
movb $7, %cl
subb %dl, %cl # %cl = 7 - %dl
shrb %cl, %al # %al >>= %cl
andb $1, %al
jz .print_loop
.endif
/* In .div_loop, we divise the number we want to print (%rax) by 10
and push the reminder of the division onto the stack until
the number is 0.
We can't put the reminders directly in the buffer, because the
digits would be reversed, so we push them onto the stack and then
we pop them in the right order (first in last out).
%rax: number to be divised repeatedly by 10
%r12: number of digits there are in the stack
*/
xorq %r12, %r12
movq %rbx, %rax
.div_loop:
/* We divise %rax by 10. It is way faster to do it this weird way,
beacuse real divisions take a lot of cyles.
The code is taken from the gcc output.
You can try to understand this here:
http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
(I do not understand it).
*/
movq %rax, %rdi
movabsq $-3689348814741910323, %rdx
mulq %rdx
shrq $3, %rdx
leaq (%rdx, %rdx, 4), %r11
movq %rdx, %rax # %rax = %rax / 10
addq %r11, %r11
subq %r11, %rdi # %rdi = %rax % 10
/* We add 0x30 to the reminder because the ascii code for a digit
is 0x30 + digit, and we push it onto the stack.
*/
addq $0x30, %rdi
push %rdi
incq %r12
/* Jump back to .div_loop if %rax isn't 0 */
testq %rax, %rax
jnz .div_loop
/* If we would overflow the buffer by emptying the stack to it,
we write it beforehand.
*/
leaq (%r13, %r12), %rax
cmpq $BUF_LEN, %rax
ja .write_buf
.fill_loop:
/* Pop the digit from the stack, and put it in the buffer */
pop %rdi
decq %r12
movb %dil, char_buf(%r13)
incq %r13
/* Continue popping from the stack if there are still digits on it */
testq %r12, %r12
jnz .fill_loop
/* We finished putting the digits in the buffer,
we can now push '\n' in it.
*/
movb $0xA, char_buf(%r13)
incq %r13
jmp .print_loop
.write_buf:
/* Write the buffer contents to stdout */
movq $1, %rax # sys_write
movq $1, %rdi # fd
movq $char_buf, %rsi # buf
movq %r13, %rdx # count
syscall
/* Reset the position in the buffer */
xorq %r13, %r13
jmp .fill_loop
.end_print:
/* Write the rest of the buffer contents to stdout */
movq $1, %rax # sys_write
movq $1, %rdi # fd
movq $char_buf, %rsi # buf
movq %r13, %rdx # count
syscall
/* Unallocate the memory
It is optional, but I think it's a good thing to do.
*/
movq $11, %rax # sys_munmap
movq primes, %rdi # addr
movq num, %rsi
shrq $3, %rsi
incq %rsi # len = n / 8 + 1
syscall
.finish:
/* Exit with code 0 */
movq $60, %rax # sys_exit
xorq %rdi, %rdi # error_code
syscall
# vim: et! ts=8 sts=8 sw=8