-
Notifications
You must be signed in to change notification settings - Fork 5
/
train_librispeechmix_pretrained.py
691 lines (603 loc) · 26.9 KB
/
train_librispeechmix_pretrained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
#!/usr/bin/env/python
"""Recipe for training a transducer-based TS-ASR system (see https://arxiv.org/abs/2209.04175).
A pretrained speaker verification model (kept frozen) is used as a speaker encoder.
To run this recipe:
> python train_librispeechmix_pretrained.py hparams/LibriSpeechMix/<config>_<speaker-encoder>.yaml
Authors
* Luca Della Libera 2023
"""
# Adapted from:
# https://github.com/speechbrain/speechbrain/blob/v0.5.15/recipes/LibriSpeech/ASR/transducer/train.py
import itertools
import json
import math
import os
import sys
import speechbrain as sb
import torch
import torchaudio
from hyperpyyaml import load_hyperpyyaml
from speechbrain.dataio.dataio import length_to_mask
from speechbrain.dataio.sampler import DynamicBatchSampler
from speechbrain.tokenizers.SentencePiece import SentencePiece
from speechbrain.utils.distributed import if_main_process, run_on_main
from transformers import AutoModelForAudioXVector
class TSASR(sb.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
current_epoch = self.hparams.epoch_counter.current
batch = batch.to(self.device)
mixed_sigs, mixed_sigs_lens = batch.mixed_sig
enroll_sigs, enroll_sigs_lens = batch.enroll_sig
tokens_bos, tokens_bos_lens = batch.tokens_bos
# Extract speaker embedding
with torch.no_grad():
self.modules.speaker_encoder.eval()
speaker_embs = self.modules.speaker_encoder(
input_values=enroll_sigs,
attention_mask=length_to_mask(
(enroll_sigs_lens * enroll_sigs.shape[-1])
.ceil()
.clamp(max=enroll_sigs.shape[-1])
.int()
).long(), # 0 for masked tokens
output_attentions=False,
output_hidden_states=self.hparams.injection_mode == "cross_attention",
)
if self.hparams.injection_mode == "cross_attention":
speaker_embs = speaker_embs.hidden_states[-1][
..., : self.hparams.speaker_embedding_dim
]
else:
speaker_embs = speaker_embs.embeddings[:, None, :]
if hparams["plot_embeddings"]:
# Collect speaker embeddings
for i, (ID, speaker_emb) in enumerate(zip(batch.id, speaker_embs)):
speaker_emb = speaker_emb.detach()[
: (enroll_sigs_lens[i] * len(speaker_emb))
.ceil()
.clamp(max=len(speaker_emb))
.int()
]
if self.hparams.injection_mode == "cross_attention":
# Pooling along time dimension
speaker_emb = speaker_emb.mean(dim=0)
else:
speaker_emb = speaker_emb[0]
self.all_speaker_embs[ID] = speaker_emb.cpu().numpy()
speaker_embs = self.modules.speaker_proj(speaker_embs)
# Add speed perturbation if specified
if self.hparams.augment and stage == sb.Stage.TRAIN:
if "speed_perturb" in self.modules:
mixed_sigs = self.modules.speed_perturb(mixed_sigs)
# Extract features
feats = self.modules.feature_extractor(mixed_sigs)
feats = self.modules.normalizer(feats, mixed_sigs_lens, epoch=current_epoch)
# Add augmentation if specified
if self.hparams.augment and stage == sb.Stage.TRAIN:
if "augmentation" in self.modules:
feats = self.modules.augmentation(feats)
# Forward encoder/transcriber
feats = self.modules.frontend(feats)
if hparams["plot_attentions"]:
# Plot attention
from utils import plot_attention
enc_out, attns = self.modules.encoder(
feats, mixed_sigs_lens, speaker_embs, enroll_sigs_lens, return_attn=True
)
for i, ID in enumerate(batch.id):
ID = ID.replace("/", "_").split(".")[0]
output_path = os.path.join(hparams["image_folder"], ID, "attention")
os.makedirs(output_path, exist_ok=True)
for fmt in hparams["image_formats"]:
for j, attn in enumerate(attns):
plot_attention(
attn[i].detach().cpu(),
os.path.join(
output_path,
f"{ID}_attention_{str(j + 1).zfill(2)}.{fmt}",
),
)
else:
enc_out = self.modules.encoder(
feats, mixed_sigs_lens, speaker_embs, enroll_sigs_lens
)
enc_out = self.modules.encoder_proj(enc_out)
# Forward decoder/predictor
embs = self.modules.embedding(tokens_bos)
dec_out, _ = self.modules.decoder(embs, lengths=tokens_bos_lens)
dec_out = self.modules.decoder_proj(dec_out)
# Forward joiner
# Add target sequence dimension to the encoder tensor: [B, T, H_enc] => [B, T, 1, H_enc]
# Add source sequence dimension to the decoder tensor: [B, U, H_dec] => [B, 1, U, H_dec]
joiner_out = self.modules.joiner(enc_out[..., None, :], dec_out[:, None, ...])
# Compute transducer logits
logits = self.modules.transducer_head(joiner_out)
# Compute outputs
hyps = None
if stage == sb.Stage.VALID:
# During validation, run decoding only every valid_search_freq epochs to speed up training
if current_epoch % self.hparams.valid_search_freq == 0:
hyps, scores, _, _ = self.hparams.greedy_searcher(enc_out)
elif stage == sb.Stage.TEST:
hyps, scores, _, _ = self.hparams.beam_searcher(enc_out)
return logits, hyps
def compute_objectives(self, predictions, batch, stage):
"""Computes the transducer loss given predictions and targets."""
logits, hyps = predictions
ids = batch.id
_, mixed_sigs_lens = batch.mixed_sig
tokens, tokens_lens = batch.tokens
loss = self.hparams.transducer_loss(
logits, tokens, mixed_sigs_lens, tokens_lens
)
if hyps is not None:
target_words = batch.target_words
# Decode predicted tokens to words
predicted_words = self.tokenizer(hyps, task="decode_from_list")
if (
stage == sb.Stage.TEST
and self.hparams.prompt_test
and not brain.hparams.transcribe_enroll
):
# Remove enrollment transcriptions
for i, (ID, transcription) in enumerate(zip(ids, predicted_words)):
enroll_transcription = self.hparams.enroll_transcriptions[ID]
if "prepend" in self.hparams.prompt_mode:
transcription = transcription[len(enroll_transcription) :]
if "append" in self.hparams.prompt_mode:
# Robust to the case where len(enroll_transcription) = 0
transcription = transcription[
: len(transcription) - len(enroll_transcription)
]
if len(transcription) == 0:
transcription = [""]
predicted_words[i] = transcription
self.cer_metric.append(ids, predicted_words, target_words)
self.wer_metric.append(ids, predicted_words, target_words)
return loss
def on_fit_batch_end(self, batch, outputs, loss, should_step):
"""Called after ``fit_batch()``, meant for calculating and logging metrics."""
if self.hparams.enable_scheduler and should_step:
self.hparams.noam_scheduler(self.optimizer)
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch."""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.wer_computer()
if hparams["plot_embeddings"]:
self.all_speaker_embs = {}
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of each epoch."""
# Compute/store important stats
current_epoch = self.hparams.epoch_counter.current
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
elif (
stage == sb.Stage.VALID
and current_epoch % self.hparams.valid_search_freq == 0
) or stage == sb.Stage.TEST:
if self.distributed_launch:
# Blocking, no explicit synchronization required
world_size = int(os.environ["WORLD_SIZE"])
all_cer_scores = [None for _ in range(world_size)]
all_wer_scores = [None for _ in range(world_size)]
torch.distributed.all_gather_object(
all_cer_scores, self.cer_metric.scores
)
torch.distributed.all_gather_object(
all_wer_scores, self.wer_metric.scores
)
self.cer_metric.scores = list(itertools.chain(*all_cer_scores))
self.wer_metric.scores = list(itertools.chain(*all_wer_scores))
# Remove duplicates introduced by DDP when the dataset size is not divisible by WORLD_SIZE
self.cer_metric.scores = list(
{x["key"]: x for x in self.cer_metric.scores}.values()
)
self.wer_metric.scores = list(
{x["key"]: x for x in self.wer_metric.scores}.values()
)
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration operations, like annealing, logging, etc.
if stage == sb.Stage.VALID:
lr = self.hparams.noam_scheduler.current_lr
steps = self.optimizer_step
self.hparams.train_logger.log_stats(
stats_meta={"epoch": epoch, "lr": lr, "steps": steps},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
if current_epoch % self.hparams.valid_search_freq == 0:
if if_main_process():
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]},
min_keys=["WER"],
num_to_keep=self.hparams.keep_checkpoints,
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": current_epoch}, test_stats=stage_stats,
)
if if_main_process():
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
if hparams["plot_embeddings"]:
# Plot embeddings
from utils import plot_embeddings
os.makedirs(hparams["image_folder"], exist_ok=True)
for fmt in hparams["image_formats"]:
plot_embeddings(
list(self.all_speaker_embs.values()),
[str(x.split("/")[-3]) for x in self.all_speaker_embs.keys()],
os.path.join(hparams["image_folder"], f"embeddings.{fmt}"),
title="Pretrained WavLM speaker encoder",
perplexity=min(len(self.all_speaker_embs) - 1, 30),
)
def dataio_prepare(hparams, tokenizer):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions."""
# 1. Define datasets
data_folder = hparams["data_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_json(
json_path=hparams["train_json"], replacements={"DATA_ROOT": data_folder},
)
if hparams["sorting"] == "ascending":
# Sort training data to speed up training
train_data = train_data.filtered_sorted(
sort_key="duration",
key_max_value={"duration": hparams["train_remove_if_longer"]},
)
elif hparams["sorting"] == "descending":
# Sort training data to speed up training
train_data = train_data.filtered_sorted(
sort_key="duration",
reverse=True,
key_max_value={"duration": hparams["train_remove_if_longer"]},
)
elif hparams["sorting"] == "random":
pass
else:
raise NotImplementedError("`sorting` must be random, ascending or descending")
valid_data = sb.dataio.dataset.DynamicItemDataset.from_json(
json_path=hparams["valid_json"], replacements={"DATA_ROOT": data_folder},
)
# Sort validation data to speed up validation
valid_data = valid_data.filtered_sorted(
sort_key="duration",
reverse=True,
key_max_value={"duration": hparams["valid_remove_if_longer"]},
)
test_data = sb.dataio.dataset.DynamicItemDataset.from_json(
json_path=hparams["test_json"], replacements={"DATA_ROOT": data_folder},
)
# Sort the test data to speed up testing
test_data = test_data.filtered_sorted(
sort_key="duration",
reverse=True,
key_max_value={"duration": hparams["test_remove_if_longer"]},
)
datasets = [train_data, valid_data, test_data]
# 2. Define audio pipeline
@sb.utils.data_pipeline.takes(
"wavs", "enroll_wav", "delays", "start", "duration", "target_speaker_idx", "id",
)
@sb.utils.data_pipeline.provides("mixed_sig", "enroll_sig")
def audio_pipeline(
wavs, enroll_wav, delays, start, duration, target_speaker_idx, ID
):
# Mixed signal
sigs = []
for wav in wavs:
try:
sig, sample_rate = torchaudio.load(wav)
except RuntimeError:
sig, sample_rate = torchaudio.load(wav.replace(".wav", ".flac"))
sig = torchaudio.functional.resample(
sig[0], sample_rate, hparams["sample_rate"],
)
sigs.append(sig)
tmp = []
for i, (sig, delay) in enumerate(zip(sigs, delays)):
if i != target_speaker_idx:
if hparams["gain_nontarget"] != 0:
target_sig_power = (sigs[target_speaker_idx] ** 2).mean()
ratio = 10 ** (
hparams["gain_nontarget"] / 10
) # ratio = interference_sig_power / target_sig_power
desired_interference_sig_power = ratio * target_sig_power
interference_sig_power = (sig ** 2).mean()
gain = (
desired_interference_sig_power / interference_sig_power
).sqrt()
sig *= gain
frame_delay = math.ceil(delay * hparams["sample_rate"])
sig = torch.nn.functional.pad(sig, [frame_delay, 0])
tmp.append(sig)
sigs = tmp
max_length = max(len(x) for x in sigs)
sigs = [torch.nn.functional.pad(x, [0, max_length - len(x)]) for x in sigs]
mixed_sig = sigs[0].clone()
for sig in sigs[1:]:
mixed_sig += sig
frame_start = math.ceil(start * hparams["sample_rate"])
frame_duration = math.ceil(duration * hparams["sample_rate"])
mixed_sig = mixed_sig[frame_start : frame_start + frame_duration]
# Enrollment signal
try:
enroll_sig, sample_rate = torchaudio.load(enroll_wav)
except RuntimeError:
enroll_sig, sample_rate = torchaudio.load(
enroll_wav.replace(".wav", ".flac")
)
enroll_sig = torchaudio.functional.resample(
enroll_sig[0], sample_rate, hparams["sample_rate"],
)
# Trim enrollment signal if too long
enroll_sig = enroll_sig[
: math.ceil(hparams["trim_enroll"] * hparams["sample_rate"])
]
if hparams["plot_data"]:
from utils import play_waveform, plot_fbanks, plot_waveform
ID = ID.replace("/", "_").split(".")[0]
output_path = os.path.join(hparams["image_folder"], ID)
os.makedirs(output_path, exist_ok=True)
play_waveform(
mixed_sig,
hparams["sample_rate"],
os.path.join(output_path, f"{ID}.wav"),
)
for fmt in hparams["image_formats"]:
plot_waveform(
[sigs[target_speaker_idx]]
+ [x for i, x in enumerate(sigs) if i != target_speaker_idx],
hparams["sample_rate"],
opacity=0.6,
output_image=os.path.join(output_path, f"{ID}_waveform.{fmt}"),
labels=["Target"] + ["Interference"]
if len(sigs) == 2
else [f"Interference {i + 1}" for i in range(len(sigs) - 1)],
legend=True,
)
plot_fbanks(
mixed_sig,
hparams["sample_rate"],
output_image=os.path.join(output_path, f"{ID}_fbanks.{fmt}"),
)
play_waveform(
enroll_sig,
hparams["sample_rate"],
os.path.join(output_path, f"{ID}_enrollment.wav"),
)
for fmt in hparams["image_formats"]:
plot_waveform(
enroll_sig,
hparams["sample_rate"],
output_image=os.path.join(
output_path, f"{ID}_waveform_enrollment.{fmt}",
),
labels=["Enrollment"],
legend=True,
)
plot_fbanks(
enroll_sig,
hparams["sample_rate"],
output_image=os.path.join(
output_path, f"{ID}_fbanks_enrollment.{fmt}"
),
)
if hparams["prompt_test"]:
if "prepend" in hparams["prompt_mode"]:
mixed_sig = torch.cat([enroll_sig, mixed_sig])
if "append" in hparams["prompt_mode"]:
mixed_sig = torch.cat([mixed_sig, enroll_sig])
if hparams.get("transcribe_enroll", False):
mixed_sig = enroll_sig
yield mixed_sig
yield enroll_sig
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
# 3. Define text pipeline
@sb.utils.data_pipeline.takes("wrd")
@sb.utils.data_pipeline.provides(
"tokens_bos", "tokens", "target_words",
)
def text_pipeline(wrd):
tokens_list = tokenizer.sp.encode_as_ids(wrd)
tokens_bos = torch.LongTensor([hparams["blank_index"]] + tokens_list)
yield tokens_bos
tokens = torch.LongTensor(tokens_list)
yield tokens
target_words = wrd.split(" ")
# When `ref_tokens` is an empty string add dummy space
# to avoid division by 0 when computing WER/CER
for i, char in enumerate(target_words):
if len(char) == 0:
target_words[i] = " "
yield target_words
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
# 4. Set output
sb.dataio.dataset.set_output_keys(
datasets,
["id", "mixed_sig", "enroll_sig", "tokens_bos", "tokens", "target_words"],
)
return train_data, valid_data, test_data
if __name__ == "__main__":
# Command-line interface
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# If --distributed_launch then create ddp_init_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
# Dataset preparation
from librispeechmix_prepare import prepare_librispeechmix # noqa
# Due to DDP, do the preparation ONLY on the main Python process
run_on_main(
prepare_librispeechmix,
kwargs={
"data_folder": hparams["data_folder"],
"save_folder": hparams["save_folder"],
"splits": hparams["splits"],
"num_targets": hparams["num_targets"],
"num_enrolls": hparams["num_enrolls"],
"trim_nontarget": hparams["trim_nontarget"],
"suppress_delay": hparams["suppress_delay"],
"overlap_ratio": hparams["overlap_ratio"],
},
)
# NOTE: the token distribution of the train set might differ from that of the validation/test
# set, therefore we fit the tokenizer on both train, validation, and test
train_valid_test = {}
for split in ["train", "valid", "test"]:
json_file = hparams[f"{split}_json"]
with open(json_file, encoding="utf-8") as f:
transcriptions = json.load(f)
train_valid_test.update(transcriptions)
train_valid_test_json = os.path.join(
os.path.dirname(json_file), "train_valid_test.json"
)
with open(train_valid_test_json, "w", encoding="utf-8") as f:
json.dump(train_valid_test, f, indent=4)
# Define tokenizer
tokenizer = SentencePiece(
model_dir=hparams["save_folder"],
vocab_size=hparams["vocab_size"],
annotation_train=train_valid_test_json,
annotation_read="wrd",
model_type=hparams["token_type"],
character_coverage=hparams["character_coverage"],
unk_id=hparams["blank_index"],
annotation_format="json",
)
# Create the datasets objects as well as tokenization and encoding
train_data, valid_data, _ = dataio_prepare(hparams, tokenizer)
# Pretrain the specified modules
run_on_main(hparams["pretrainer"].collect_files)
run_on_main(hparams["pretrainer"].load_collected)
# Download the pretrained speaker encoder
speaker_encoder = AutoModelForAudioXVector.from_pretrained(
hparams["speaker_encoder_path"]
)
hparams["modules"]["speaker_encoder"] = speaker_encoder
# Log number of parameters in the speaker encoder
sb.core.logger.info(
f"{round(sum([x.numel() for x in speaker_encoder.parameters()]) / 1e6)}M parameters in frozen speaker encoder"
)
# Trainer initialization
brain = TSASR(
modules=hparams["modules"],
opt_class=hparams["opt_class"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
# Add objects to trainer
brain.tokenizer = tokenizer
# Dynamic batching
hparams["train_dataloader_kwargs"] = {"num_workers": hparams["dataloader_workers"]}
if hparams["dynamic_batching"]:
hparams["train_dataloader_kwargs"]["batch_sampler"] = DynamicBatchSampler(
train_data,
hparams["train_max_batch_length"],
num_buckets=hparams["num_buckets"],
length_func=lambda x: x["duration"],
shuffle=False,
batch_ordering=hparams["sorting"],
max_batch_ex=hparams["max_batch_size"],
)
else:
hparams["train_dataloader_kwargs"]["batch_size"] = hparams["train_batch_size"]
hparams["valid_dataloader_kwargs"] = {"num_workers": hparams["dataloader_workers"]}
if hparams["dynamic_batching"]:
hparams["valid_dataloader_kwargs"]["batch_sampler"] = DynamicBatchSampler(
valid_data,
hparams["valid_max_batch_length"],
num_buckets=hparams["num_buckets"],
length_func=lambda x: x["duration"],
shuffle=False,
batch_ordering="descending",
max_batch_ex=hparams["max_batch_size"],
)
else:
hparams["valid_dataloader_kwargs"]["batch_size"] = hparams["valid_batch_size"]
# Train
brain.fit(
brain.hparams.epoch_counter,
train_data,
valid_data,
train_loader_kwargs=hparams["train_dataloader_kwargs"],
valid_loader_kwargs=hparams["valid_dataloader_kwargs"],
)
if hparams["plot_grad_norm"]:
# Plot gradient norm (checkpointing is not supported)
from utils import plot_grad_norm
plot_grad_norm(brain.grad_norm)
# Test on each split separately
for split in hparams["test_splits"]:
# Due to DDP, do the preparation ONLY on the main Python process
run_on_main(
prepare_librispeechmix,
kwargs={
"data_folder": hparams["data_folder"],
"save_folder": hparams["save_folder"],
"splits": [split],
"num_targets": hparams["num_targets"],
"num_enrolls": hparams["num_enrolls"],
"trim_nontarget": hparams["trim_nontarget"],
"suppress_delay": hparams["suppress_delay"],
"overlap_ratio": hparams["overlap_ratio"],
},
)
# Create the datasets objects as well as tokenization and encoding
_, _, test_data = dataio_prepare(hparams, tokenizer)
# Dynamic batching
hparams["test_dataloader_kwargs"] = {
"num_workers": hparams["dataloader_workers"]
}
if hparams["dynamic_batching"]:
hparams["test_dataloader_kwargs"]["batch_sampler"] = DynamicBatchSampler(
test_data,
hparams["test_max_batch_length"],
num_buckets=hparams["num_buckets"],
length_func=lambda x: x["duration"],
shuffle=False,
batch_ordering="descending",
max_batch_ex=hparams["max_batch_size"],
)
else:
hparams["test_dataloader_kwargs"]["batch_size"] = hparams["test_batch_size"]
brain.hparams.wer_file = os.path.join(
hparams["output_folder"], f"wer_{split}.txt"
)
if hparams["prompt_test"]:
# Transcribe enrollments
brain.hparams.transcribe_enroll = hparams["transcribe_enroll"] = True
original_wer_file = brain.hparams.wer_file
brain.hparams.wer_file = os.path.join(
os.path.dirname(original_wer_file), "wer_enrollments.txt"
)
brain.evaluate(
test_data,
min_key="WER",
test_loader_kwargs=hparams["test_dataloader_kwargs"],
)
enroll_transcriptions = {
x["key"]: x["hyp_tokens"] for x in brain.wer_metric.scores
}
brain.hparams.enroll_transcriptions = hparams[
"enroll_transcriptions"
] = enroll_transcriptions
brain.hparams.transcribe_enroll = hparams["transcribe_enroll"] = False
brain.hparams.wer_file = original_wer_file
# Transcribe mixtures
brain.evaluate(
test_data,
min_key="WER",
test_loader_kwargs=hparams["test_dataloader_kwargs"],
)