@article{weightstandardization,
author = {Siyuan Qiao and Huiyu Wang and Chenxi Liu and Wei Shen and Alan Yuille},
title = {Weight Standardization},
journal = {arXiv preprint arXiv:1903.10520},
year = {2019},
}
Faster R-CNN
Backbone | Style | Normalization | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
---|---|---|---|---|---|---|---|---|---|
R-50-FPN | pytorch | GN+WS | 1x | 5.9 | 11.7 | 39.7 | - | config | model | log |
R-101-FPN | pytorch | GN+WS | 1x | 8.9 | 9.0 | 41.7 | - | config | model | log |
X-50-32x4d-FPN | pytorch | GN+WS | 1x | 7.0 | 10.3 | 40.7 | - | config | model | log |
X-101-32x4d-FPN | pytorch | GN+WS | 1x | 10.8 | 7.6 | 42.1 | - | config | model | log |
Mask R-CNN
Backbone | Style | Normalization | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
---|---|---|---|---|---|---|---|---|---|
R-50-FPN | pytorch | GN+WS | 2x | 7.3 | 10.5 | 40.6 | 36.6 | config | model | log |
R-101-FPN | pytorch | GN+WS | 2x | 10.3 | 8.6 | 42.0 | 37.7 | config | model | log |
X-50-32x4d-FPN | pytorch | GN+WS | 2x | 8.4 | 9.3 | 41.1 | 37.0 | config | model | log |
X-101-32x4d-FPN | pytorch | GN+WS | 2x | 12.2 | 7.1 | 42.1 | 37.9 | config | model | log |
R-50-FPN | pytorch | GN+WS | 20-23-24e | 7.3 | - | 41.1 | 37.1 | config | model | log |
R-101-FPN | pytorch | GN+WS | 20-23-24e | 10.3 | - | 43.1 | 38.6 | config | model | log |
X-50-32x4d-FPN | pytorch | GN+WS | 20-23-24e | 8.4 | - | 42.1 | 38.0 | config | model | log |
X-101-32x4d-FPN | pytorch | GN+WS | 20-23-24e | 12.2 | - | 42.7 | 38.5 | config | model | log |
Note:
- GN+WS requires about 5% more memory than GN, and it is only 5% slower than GN.
- In the paper, a 20-23-24e lr schedule is used instead of 2x.
- The X-50-GN and X-101-GN pretrained models are also shared by the authors.