forked from cloudera/impala-udf-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
variance-uda.cc
146 lines (128 loc) · 5.18 KB
/
variance-uda.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
// Copyright 2012 Cloudera Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <assert.h>
#include <math.h>
#include <algorithm>
#include <sstream>
#include <iostream>
#include <impala_udf/udf.h>
#include "uda-sample.h"
using namespace std;
using namespace impala_udf;
// An implementation of a simple single pass variance algorithm. A standard UDA must
// be single pass (i.e. does not scan the table more than once), so the most canonical
// two pass approach is not practical.
// This algorithms suffers from numerical precision issues if the input values are
// large due to floating point rounding.
struct VarianceState {
// Sum of all input values.
double sum;
// Sum of the square of all input values.
double sum_squared;
// The number of input values.
int64_t count;
};
void VarianceInit(FunctionContext* ctx, StringVal* dst) {
dst->is_null = false;
dst->len = sizeof(VarianceState);
dst->ptr = ctx->Allocate(dst->len);
memset(dst->ptr, 0, dst->len);
}
void VarianceUpdate(FunctionContext* ctx, const DoubleVal& src, StringVal* dst) {
if (src.is_null) return;
VarianceState* state = reinterpret_cast<VarianceState*>(dst->ptr);
state->sum += src.val;
state->sum_squared += src.val * src.val;
++state->count;
}
void VarianceMerge(FunctionContext* ctx, const StringVal& src, StringVal* dst) {
VarianceState* src_state = reinterpret_cast<VarianceState*>(src.ptr);
VarianceState* dst_state = reinterpret_cast<VarianceState*>(dst->ptr);
dst_state->sum += src_state->sum;
dst_state->sum_squared += src_state->sum_squared;
dst_state->count += src_state->count;
}
// A serialize function is necessary to free the intermediate state allocation.
const StringVal VarianceSerialize(FunctionContext* ctx, const StringVal& src) {
StringVal result(ctx, src.len);
memcpy(result.ptr, src.ptr, src.len);
ctx->Free(src.ptr);
return result;
}
StringVal VarianceFinalize(FunctionContext* ctx, const StringVal& src) {
VarianceState state = *reinterpret_cast<VarianceState*>(src.ptr);
ctx->Free(src.ptr);
if (state.count == 0 || state.count == 1) return StringVal::null();
double mean = state.sum / state.count;
double variance =
(state.sum_squared - state.sum * state.sum / state.count) / (state.count - 1);
return ToStringVal(ctx, variance);
}
struct KnuthVarianceState {
int64_t count;
double mean;
double m2;
};
void KnuthVarianceInit(FunctionContext* ctx, StringVal* dst) {
dst->is_null = false;
dst->len = sizeof(KnuthVarianceState);
dst->ptr = ctx->Allocate(dst->len);
memset(dst->ptr, 0, dst->len);
}
void KnuthVarianceUpdate(FunctionContext* ctx, const DoubleVal& src, StringVal* dst) {
if (src.is_null) return;
KnuthVarianceState* state = reinterpret_cast<KnuthVarianceState*>(dst->ptr);
double temp = 1 + state->count;
double delta = src.val - state->mean;
double r = delta / temp;
state->mean += r;
state->m2 += state->count * delta * r;
state->count = temp;
}
void KnuthVarianceMerge(FunctionContext* ctx, const StringVal& src, StringVal* dst) {
KnuthVarianceState* src_state = reinterpret_cast<KnuthVarianceState*>(src.ptr);
KnuthVarianceState* dst_state = reinterpret_cast<KnuthVarianceState*>(dst->ptr);
if (src_state->count == 0) return;
double delta = dst_state->mean - src_state->mean;
double sum_count = dst_state->count + src_state->count;
dst_state->mean = src_state->mean + delta * (dst_state->count / sum_count);
dst_state->m2 = (src_state->m2) + dst_state->m2 +
(delta * delta) * (src_state->count * dst_state->count / sum_count);
dst_state->count = sum_count;
}
// Same as VarianceSerialize(). Create a wrapper function so automatic symbol resolution
// still works.
const StringVal KnuthVarianceSerialize(FunctionContext* ctx, const StringVal& state_sv) {
return VarianceSerialize(ctx, state_sv);
}
// TODO: this can be used as the actual variance finalize function once the return type
// doesn't need to match the intermediate type in Impala 2.0.
DoubleVal KnuthVarianceFinalize(const StringVal& state_sv) {
KnuthVarianceState* state = reinterpret_cast<KnuthVarianceState*>(state_sv.ptr);
if (state->count == 0 || state->count == 1) return DoubleVal::null();
double variance_n = state->m2 / state->count;
double variance = variance_n * state->count / (state->count - 1);
return DoubleVal(variance);
}
StringVal KnuthVarianceFinalize(FunctionContext* ctx, const StringVal& src) {
StringVal result = ToStringVal(ctx, KnuthVarianceFinalize(src));
ctx->Free(src.ptr);
return result;
}
StringVal StdDevFinalize(FunctionContext* ctx, const StringVal& src) {
DoubleVal variance = KnuthVarianceFinalize(src);
ctx->Free(src.ptr);
if (variance.is_null) return StringVal::null();
return ToStringVal(ctx, sqrt(variance.val));
}