-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
122 lines (105 loc) · 4.31 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch.optim as optim
import math
from HOMGNN import *
import util
from util import *
class Trainer():
def __init__(self, model, lrate, wdecay, clip, step_size, seq_out_len, scaler, device, cl=True):
self.scaler = scaler
self.model = model
self.model.to(device)
self.optimizer = optim.Adam(self.model.parameters(), lr=lrate, weight_decay=wdecay)
self.loss = util.masked_mae
self.clip = clip
self.step = step_size
self.iter = 1
self.task_level = 1
self.seq_out_len = seq_out_len
self.cl = cl
def train(self, input, real_val, idx=None):
self.model.train()
self.optimizer.zero_grad()
output = self.model(input, idx=idx)
output = output.transpose(1,3)
real = torch.unsqueeze(real_val,dim=1)
predict = self.scaler.inverse_transform(output)
if self.iter%self.step==0 and self.task_level<=self.seq_out_len:
self.task_level +=1
# Log.info("update self.tasklevel:{}".format(self.task_level))
if self.cl:
loss = self.loss(predict[:, :, :, :self.task_level], real[:, :, :, :self.task_level], 0.0)
else:
loss = self.loss(predict, real, 0.0)
loss.backward()
if self.clip is not None:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.clip)
self.optimizer.step()
# mae = util.masked_mae(predict,real,0.0).item()
mape = util.masked_mape(predict,real,0.0).item()
rmse = util.masked_rmse(predict,real,0.0).item()
self.iter += 1
return loss.item(),mape,rmse
def eval(self, input, real_val):
self.model.eval()
output = self.model(input)
output = output.transpose(1,3)
real = torch.unsqueeze(real_val,dim=1)
predict = self.scaler.inverse_transform(output)
loss = self.loss(predict, real, 0.0)
mape = util.masked_mape(predict,real,0.0).item()
rmse = util.masked_rmse(predict,real,0.0).item()
return loss.item(),mape,rmse
class Optim(object):
def _makeOptimizer(self):
if self.method == 'sgd':
self.optimizer = optim.SGD(self.params, lr=self.lr, weight_decay=self.lr_decay)
elif self.method == 'adagrad':
self.optimizer = optim.Adagrad(self.params, lr=self.lr, weight_decay=self.lr_decay)
elif self.method == 'adadelta':
self.optimizer = optim.Adadelta(self.params, lr=self.lr, weight_decay=self.lr_decay)
elif self.method == 'adam':
self.optimizer = optim.Adam(self.params, lr=self.lr, weight_decay=self.lr_decay)
else:
raise RuntimeError("Invalid optim method: " + self.method)
def __init__(self, params, method, lr, clip, lr_decay=1, start_decay_at=None):
self.params = params # careful: params may be a generator
self.last_ppl = None
self.lr = lr
self.clip = clip
self.method = method
self.lr_decay = lr_decay
self.start_decay_at = start_decay_at
self.start_decay = False
self._makeOptimizer()
def step(self):
# Compute gradients norm.
grad_norm = 0
if self.clip is not None:
torch.nn.utils.clip_grad_norm_(self.params, self.clip)
# for param in self.params:
# grad_norm += math.pow(param.grad.data.norm(), 2)
#
# grad_norm = math.sqrt(grad_norm)
# if grad_norm > 0:
# shrinkage = self.max_grad_norm / grad_norm
# else:
# shrinkage = 1.
#
# for param in self.params:
# if shrinkage < 1:
# param.grad.data.mul_(shrinkage)
self.optimizer.step()
return grad_norm
# decay learning rate if val perf does not improve or we hit the start_decay_at limit
def updateLearningRate(self, ppl, epoch):
if self.start_decay_at is not None and epoch >= self.start_decay_at:
self.start_decay = True
if self.last_ppl is not None and ppl > self.last_ppl:
self.start_decay = True
if self.start_decay:
self.lr = self.lr * self.lr_decay
print("Decaying learning rate to %g" % self.lr)
#only decay for one epoch
self.start_decay = False
self.last_ppl = ppl
self._makeOptimizer()