The Elves of Gear Island are thankful for your help and send you on your way. They even have a hang glider that someone stole from Desert Island; since you're already going that direction, it would help them a lot if you would use it to get down there and return it to them.
As you reach the bottom of the relentless avalanche of machine parts, you discover that they're already forming a formidable heap. Don't worry, though - a group of Elves is already here organizing the parts, and they have a system.
To start, each part is rated in each of four categories:
x
: E_x_tremely cool lookingm
: _M_usical (it makes a noise when you hit it)a
: _A_erodynamics
: _S_hiny
Then, each part is sent through a series of workflows that will ultimately accept or reject the part. Each workflow has a name and contains a list of rules; each rule specifies a condition and where to send the part if the condition is true. The first rule that matches the part being considered is applied immediately, and the part moves on to the destination described by the rule. (The last rule in each workflow has no condition and always applies if reached.)
Consider the workflow ex{x>10:one,m<20:two,a>30:R,A}
. This workflow is named ex
and contains four rules. If workflow ex
were considering a specific part, it would perform the following steps in order:
- Rule "
x>10:one
": If the part'sx
is more than10
, send the part to the workflow namedone
. - Rule "
m<20:two
": Otherwise, if the part'sm
is less than20
, send the part to the workflow namedtwo
. - Rule "
a>30:R
": Otherwise, if the part'sa
is more than30
, the part is immediately rejected (R
). - Rule "
A
": Otherwise, because no other rules matched the part, the part is immediately accepted (A
).
If a part is sent to another workflow, it immediately switches to the start of that workflow instead and never returns. If a part is accepted (sent to A
) or rejected (sent to R
), the part immediately stops any further processing.
The system works, but it's not keeping up with the torrent of weird metal shapes. The Elves ask if you can help sort a few parts and give you the list of workflows and some part ratings (your puzzle input). For example:
px{a<2006:qkq,m>2090:A,rfg}
pv{a>1716:R,A}
lnx{m>1548:A,A}
rfg{s<537:gd,x>2440:R,A}
qs{s>3448:A,lnx}
qkq{x<1416:A,crn}
crn{x>2662:A,R}
in{s<1351:px,qqz}
qqz{s>2770:qs,m<1801:hdj,R}
gd{a>3333:R,R}
hdj{m>838:A,pv}
{x=787,m=2655,a=1222,s=2876}
{x=1679,m=44,a=2067,s=496}
{x=2036,m=264,a=79,s=2244}
{x=2461,m=1339,a=466,s=291}
{x=2127,m=1623,a=2188,s=1013}
The workflows are listed first, followed by a blank line, then the ratings of the parts the Elves would like you to sort. All parts begin in the workflow named in
. In this example, the five listed parts go through the following workflows:
{x=787,m=2655,a=1222,s=2876}
:in
->qqz
->qs
->lnx
->_A_
{x=1679,m=44,a=2067,s=496}
:in
->px
->rfg
->gd
->_R_
{x=2036,m=264,a=79,s=2244}
:in
->qqz
->hdj
->pv
->_A_
{x=2461,m=1339,a=466,s=291}
:in
->px
->qkq
->crn
->_R_
{x=2127,m=1623,a=2188,s=1013}
:in
->px
->rfg
->_A_
Ultimately, three parts are accepted. Adding up the x
, m
, a
, and s
rating for each of the accepted parts gives 7540
for the part with x=787
, 4623
for the part with x=2036
, and 6951
for the part with x=2127
. Adding all of the ratings for all of the accepted parts gives the sum total of _19114_
.
Sort through all of the parts you've been given; what do you get if you add together all of the rating numbers for all of the parts that ultimately get accepted?
To begin, get your puzzle input.
Answer: